100+ datasets found
  1. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  2. NOAA Global Surface Temperature Dataset (NOAAGlobalTemp), Version 5.0...

    • ncei.noaa.gov
    html
    Updated Jul 1, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhang, Huai-Min; Huang, Boyin; Lawrimore, Jay H.; Menne, Matthew J.; Smith, Thomas M. (2019). NOAA Global Surface Temperature Dataset (NOAAGlobalTemp), Version 5.0 (Version Superseded) [Dataset]. http://doi.org/10.25921/9qth-2p70
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 1, 2019
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    Zhang, Huai-Min; Huang, Boyin; Lawrimore, Jay H.; Menne, Matthew J.; Smith, Thomas M.
    Time period covered
    Jan 1880 - Dec 1, 2022
    Area covered
    Description

    This version has been superseded by a newer version. It is highly recommended for users to access the current version. Users should only access this superseded version for special cases, such as reproducing studies. If necessary, this version can be accessed by contacting NCEI. The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a blended product from two independent analysis products: the Extended Reconstructed Sea Surface Temperature (ERSST) analysis and the land surface temperature (LST) analysis using the Global Historical Climatology Network (GHCN) temperature database. The data is merged into a monthly global surface temperature dataset dating back from 1880 to the present. The monthly product output is in gridded (5 degree x 5 degree) and time series formats. The product is used in climate monitoring assessments of near-surface temperatures on a global scale. The changes from version 4 to version 5 include an update to the primary input datasets: ERSST version 5 (updated from v4), and GHCN-M version 4 (updated from v3.3.3). Version 5 updates also include a new netCDF file format with CF conventions. This dataset is formerly known as Merged Land-Ocean Surface Temperature (MLOST).

  3. r

    Global Temperatures by Major City

    • redivis.com
    Updated Mar 12, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia Data Platform Demo (2016). Global Temperatures by Major City [Dataset]. https://redivis.com/datasets/1e0a-f4931vvyg
    Explore at:
    Dataset updated
    Mar 12, 2016
    Dataset authored and provided by
    Columbia Data Platform Demo
    Time period covered
    Nov 1, 1743 - Sep 1, 2013
    Description

    The table Global Temperatures by Major City is part of the dataset Climate Change: Earth Surface Temperature Data, available at https://columbia.redivis.com/datasets/1e0a-f4931vvyg. It contains 239177 rows across 7 variables.

  4. Global land temperature anomalies 1880-2024

    • statista.com
    Updated Aug 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global land temperature anomalies 1880-2024 [Dataset]. https://www.statista.com/statistics/1048518/average-land-sea-temperature-anomaly-since-1850/
    Explore at:
    Dataset updated
    Aug 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Since 1880, the annual global land temperature anomaly has fluctuated, showing an overall upward tendency. In 2024, the global land surface temperature stood at 1.98 degrees Celsius above the global average between 1901 to 2000. This was the highest annual temperature anomaly recorded during the period in consideration. Anomalies in global ocean surface temperature followed a similar trend over the same period of time. Man-made change The Earth's temperature increases naturally over time as the planet goes through cyclic changes. However, the scientific community has concluded that human interference, particularly deforestation and the consumption of fossil fuels, has acted as a catalyst in recent centuries. Increases in the unprecedented number of natural disasters in the past few decades, such as tropical cyclones, wildfires and heatwaves, have been attributed to this slight man-made increase in the Earth's surface temperature. End of an ice age? Although a one- or two-degree anomaly may not seem like a large difference, changes in the ocean and land temperatures have significant consequences for the entire planet. A five-degree drop triggered the last major ice age – the Quaternary Glaciation – over 20,000 years ago, which technically is still continuing today. This ice age is in its final interglacial period, and it will not officially end until the remnants of the final ice sheets melt, of which there are only two left today, in Antarctica and Greenland.

  5. c

    Historical changes of annual temperature and precipitation indices at...

    • kilthub.cmu.edu
    txt
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuchuan Lai; David Dzombak (2024). Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities [Dataset]. http://doi.org/10.1184/R1/7961012.v6
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Carnegie Mellon University
    Authors
    Yuchuan Lai; David Dzombak
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities

    This dataset provide:

    Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.

    Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.

    Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.

    Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.

    Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.

    Number of missing daily Tmax, Tmin, and precipitation values are included for each city.

    Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.

    The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).

    Resources:

    See included README file for more information.

    Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1

    Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538

    ACIS database for historical observations: http://scacis.rcc-acis.org/

    GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/

    Station information for each city can be accessed at: http://threadex.rcc-acis.org/

    • 2024 August updated -

      Annual calculations for 2022 and 2023 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.

      Note that future updates may be infrequent.

    • 2022 January updated -

      Annual calculations for 2021 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.

    • 2021 January updated -

      Annual calculations for 2020 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.

    • 2020 January updated -

      Annual calculations for 2019 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.

      Thresholds for all 210 cities were combined into one single file – Thresholds.csv.

    • 2019 June updated -

      Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.

      README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).

  6. Temperature and precipitation gridded data for global and regional domains...

    • cds.climate.copernicus.eu
    netcdf
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature and precipitation gridded data for global and regional domains derived from in-situ and satellite observations [Dataset]. http://doi.org/10.24381/cds.11dedf0c
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Apr 9, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf

    Time period covered
    Jan 1, 1750 - Jan 1, 2021
    Description

    This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.

  7. Monthly average temperature in the United States 2020-2025

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2025 [Dataset]. https://www.statista.com/statistics/513644/monthly-average-temperature-in-the-us-celsius/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Apr 2025
    Area covered
    United States
    Description

    The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in April 2025, the average temperature across the North American country stood at 12.02 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.

  8. CPC Global Unified Temperature

    • developers.google.com
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Physical Sciences Laboratory (2024). CPC Global Unified Temperature [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/NOAA_CPC_Temperature
    Explore at:
    Dataset updated
    Nov 13, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Time period covered
    Jan 1, 1979 - Sep 12, 2025
    Area covered
    Earth
    Description

    This dataset provides a gridded analysis of daily surface air temperature over global land areas, including daily maximum (Tmax), minimum (Tmin) temperatures. Spanning from 1979 to the present, the data is presented on 0.5-degree latitude/longitude grids, aligning with the resolution of CPC's gauge-based global daily precipitation analysis. The construction of this dataset considers orographic effects. Its primary purpose is to support climate monitoring and forecast verification activities. Input data originates from the CPC archive of GTS (Global Telecommunication System) daily reports, incorporating Tmax and Tmin data from approximately 6,000 to 7,000 global stations. Refer this for technical documentation.

  9. Historical and future temperature trends (Map Service)

    • data-usfs.hub.arcgis.com
    • gimi9.com
    • +4more
    Updated Feb 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2019). Historical and future temperature trends (Map Service) [Dataset]. https://data-usfs.hub.arcgis.com/documents/d9e653180595478c86d7a01d83a07451
    Explore at:
    Dataset updated
    Feb 21, 2019
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  10. d

    NOAA Global Surface Temperature (NOAAGlobalTemp)

    • catalog.data.gov
    • gimi9.com
    Updated Oct 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Custodian) (2024). NOAA Global Surface Temperature (NOAAGlobalTemp) [Dataset]. https://catalog.data.gov/dataset/noaa-global-surface-temperature-noaaglobaltemp1
    Explore at:
    Dataset updated
    Oct 19, 2024
    Dataset provided by
    (Custodian)
    Description

    The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land&ocean surface temperature analysis (formerly known as MLOST) It is a spatially gridded (5° - 5°) global surface temperature dataset, with monthly resolution from January 1880 to present. We combine a global sea surface (water) temperature (SST) dataset with a global land surface air temperature dataset into this merged dataset of both the Earth's and land's and ocean surface temperatures. The SST dataset is the Extended Reconstructed Sea Surface Temperature (ERSST) version 5. The land surface air temperature dataset is similar to ERSST but uses data from the Global Historical Climatology Network Monthly (GHCN-M) database, version 4.

  11. Temperature statistics for Europe derived from climate projections

    • cds.climate.copernicus.eu
    netcdf
    Updated Jan 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECMWF (2025). Temperature statistics for Europe derived from climate projections [Dataset]. http://doi.org/10.24381/cds.8be2c014
    Explore at:
    netcdfAvailable download formats
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    European Centre for Medium-Range Weather Forecastshttp://ecmwf.int/
    Authors
    ECMWF
    License

    https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/cc-by/cc-by_f24dc630aa52ab8c52a0ac85c03bc35e0abc850b4d7453bdc083535b41d5a5c3.pdf

    Time period covered
    Jan 1, 1986 - Dec 31, 2085
    Area covered
    Europe
    Description

    This dataset contains temperature exposure statistics for Europe (e.g. percentiles) derived from the daily 2 metre mean, minimum and maximum air temperature for the entire year, winter (DJF: December-January-February) and summer (JJA: June-July-August). These statistics were derived within the C3S European Health service and are available for different future time periods and using different climate change scenarios. Temperature percentiles are typically used in epidemiology and public health when defining health risk estimates and when looking at current and future health impacts, and they allow to identify a common threshold and comparison between different cities/areas. The temperature statistics are calculated, either for the season winter and summer or for the whole year, based on a bias-adjusted EURO-CORDEX dataset. The statistics are averaged for 30 years as a smoothed average from 1971 to 2100. This results in a timeseries covering the period from 1986 to 2085. Finally, the timeseries are averaged for the model ensemble and the standard deviation to this ensemble mean is provided.

  12. g

    NOAA Global Surface Temperature Dataset (NOAAGlobalTemp), Version 6.0

    • gimi9.com
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +1more
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). NOAA Global Surface Temperature Dataset (NOAAGlobalTemp), Version 6.0 [Dataset]. https://gimi9.com/dataset/data-gov_noaa-global-surface-temperature-dataset-noaaglobaltemp-version-6-0
    Explore at:
    Dataset updated
    Jul 16, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a monthly global merged land-ocean surface temperature analysis product that is derived from two independent analyses. The first is the Extended Reconstructed Sea Surface Temperature (ERSST) analysis and the second is a land surface air temperature (LSAT) analysis that uses the Global Historical Climatology Network - Monthly (GHCN-M) temperature database. The NOAAGlobalTemp data set contains global surface temperatures in gridded (5° × 5°) and monthly resolution time series (from 1850 to present time) data files. The product is used in climate monitoring assessments of near-surface temperatures on a global scale. This version, v6.0, an updated version to the current operational release v5.1, is implemented by an Artificial Neural Network method to improve the surface temperature reconstruction over the land.

  13. Global ocean temperature anomalies 1880-2024

    • statista.com
    Updated Aug 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global ocean temperature anomalies 1880-2024 [Dataset]. https://www.statista.com/statistics/736147/ocean-temperature-anomalies-based-on-temperature-departure/
    Explore at:
    Dataset updated
    Aug 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2024, the global ocean surface temperature was 0.97 degrees Celsius warmer than the 20th-century average. Oceans are responsible for absorbing over 90 percent of the Earth's excess heat from global warming. Departures from average conditions are called anomalies, and temperature anomalies result from recurring weather patterns or longer-term climate change. While the extent of these temperature anomalies fluctuates annually, an upward trend has been observed over the past several decades. Effects of climate change Since the 1980s, every region of the world has consistently recorded increases in average temperatures. These trends coincide with significant growth in the global carbon dioxide emissions, greenhouse gas, and a driver of climate change. As temperatures rise, notable decreases in the extent of arctic sea ice have been recorded. Outlook An increase in emissions from the use of fossil fuels is projected for the coming decades. Nevertheless, global investments in clean energy have increased dramatically since the early 2000s.

  14. Summer Average Temperature Change - Projections (12km)

    • climatedataportal.metoffice.gov.uk
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2023). Summer Average Temperature Change - Projections (12km) [Dataset]. https://climatedataportal.metoffice.gov.uk/datasets/TheMetOffice::summer-average-temperature-change-projections-12km/about
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Met Officehttp://www.metoffice.gov.uk/
    Area covered
    Description

    [Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.09°C.]What does the data show? This dataset shows the change in summer average temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, summer is defined as June-July-August. Note, as the values in this dataset are averaged over a season they do not represent possible extreme conditions.The dataset uses projections of daily average air temperature from UKCP18 which are averaged over the summer period to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare summer average temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Summer Average Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Summer Average Temperature Change, an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tas summer change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tas summer change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tas summer change 2.0 median' is named 'tas_summer_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas summer change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Average Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

  15. Climate.gov Data Snapshots: Temperature - Global Monthly, Difference from...

    • datalumos.org
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - Global Monthly, Difference from Average [Dataset]. http://doi.org/10.3886/E233461V1
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Description

    Q: Where was the monthly temperature warmer or cooler than usual? A: Colors show where average monthly temperature was above or below its 1991-2020 average. Blue areas experienced cooler-than-usual temperatures while areas shown in red were warmer than usual. The darker the color, the larger the difference from the long-term average temperature. Q: Where do these measurements come from? A: Weather stations on every continent record temperatures over land, and ocean surface temperatures come from measurements made by ships and buoys. NOAA scientists merge the readings from land and ocean into a single dataset. To calculate difference-from-average temperatures—also called temperature anomalies—scientists calculate the average monthly temperature across hundreds of small regions, and then subtract each region’s 1991-2020 average for the same month. If the result is a positive number, the region was warmer than the long-term average. A negative result from the subtraction means the region was cooler than usual. To generate the source images, visualizers apply a mathematical filter to the results to produce a map that has smooth color transitions and no gaps. Q: What do the colors mean? A: Shades of red show where average monthly temperature was warmer than the 1991-2020 average for the same month. Shades of blue show where the monthly average was cooler than the long-term average. The darker the color, the larger the difference from average temperature. White and very light areas were close to their long-term average temperature. Gray areas near the North and South Poles show where no data are available. Q: Why do these data matter? A: Over time, these data give us a planet-wide picture of how climate varies over months and years and changes over decades. Each month, some areas are cooler than the long-term average and some areas are warmer. Though we don’t see an increase in temperature at every location every month, the long-term trend shows a growing portion of Earth’s surface is warmer than it was during the base period. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's Environmental Visualization Laboratory (NNVL) produces the source images for the Difference from Average Temperature – Monthly maps. To produce our images, we run a set of scripts that access the source images, re-project them into desired projections at various sizes, and output them with a custom color bar. Additional information Source images available through NOAA's Environmental Visualization Lab (NNVL) are interpolated from data originally provided by the National Center for Environmental Information (NCEI) - Weather and Climate. NNVL images are based on NOAA Merged Land Ocean Global Surface Temperature Analysis data (NOAAGlobalTemp, formerly known as MLOST). References NCEI Monthly Global Analysis NOAA View Temperature Anomaly Merged Land Ocean Global Surface Temperature Analysis Global Surface Temperature Anomalies Climate at a Glance - Data Information Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...This upload includes two additional files:* Temperature - Global Monthly, Difference from Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...)* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.

  16. i

    Indoor Temperature Data Collection for Machine Learning Climate Control

    • ieee-dataport.org
    Updated May 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pravin Renold (2024). Indoor Temperature Data Collection for Machine Learning Climate Control [Dataset]. https://ieee-dataport.org/documents/indoor-temperature-data-collection-machine-learning-climate-control
    Explore at:
    Dataset updated
    May 4, 2024
    Authors
    Pravin Renold
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    2024.

  17. Yearly Temperature Anomaly

    • digital-earth-pacificcore.hub.arcgis.com
    • climat.esri.ca
    • +11more
    Updated Dec 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Yearly Temperature Anomaly [Dataset]. https://digital-earth-pacificcore.hub.arcgis.com/datasets/esri2::yearly-temperature-anomaly
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Measurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service, which includes an archive going back to 1880. The mean of the 12 months each year is displayed here. Each annual update is available around the 15th of the following January (e.g., 2020 is available Jan 15th, 2021). The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report summary report by NOAA NCEI is available here. GHCN monthly mean station averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here.What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for each year since 1880. Be sure to configure the time settings in your web map to view the timeseries correctly. Analysis: This layer can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses. For a more detailed temporal analysis, a monthly mean is available here.

  18. Daily, County-Level Wet-Bulb Globe Temperature, Universal Thermal Climate...

    • figshare.com
    application/gzip
    Updated Jul 19, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Keith Spangler (2022). Daily, County-Level Wet-Bulb Globe Temperature, Universal Thermal Climate Index, and Other Heat Metrics for the Contiguous United States, 2000-2020 [Dataset]. http://doi.org/10.6084/m9.figshare.19419836.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jul 19, 2022
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Keith Spangler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Contiguous United States, United States
    Description

    This data set includes daily, population-weighted mean values of various heat metrics for every county in the contiguous United States from 2000-2020. The dataset methodology, usage notes, and additional citations are published in Scientific Data (see reference below for Spangler et al. [2022]). Minimum, maximum, and mean ambient temperature, dew-point temperature, humidex, heat index, net effective temperature, wet-bulb globe temperature, and Universal Thermal Climate Index are included. Note that Monroe County, Florida (FIPS: 12087) and Nantucket County, Massachusetts (FIPS 25019) are missing due to unavailability of ERA5-Land data for Key West, Florida and Nantucket, MA. To use these data, assign the data from the .Rds file to a new data frame in R using the readRDS() function. Please cite the use of this data set with the following reference. Note that additional citations for specific variables can be found in Table 2.

    K.R. Spangler, S. Liang, and G.A. Wellenius. "Wet-Bulb Globe Temperature, Universal Thermal Climate Index, and Other Heat Metrics for US Counties, 2000-2020." Scientific Data (2022). doi: 10.1038/s41597-022-01405-3

    This data set contains modified Copernicus Climate Change Service information (2022), as described and cited in the manuscript referenced above. Neither the European Commission nor ECMWF is responsible for any use that may be made of the Copernicus information or data it contains. This data set is provided “as is” with no warranty of any kind.

  19. T

    Iran Average Temperature

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Iran Average Temperature [Dataset]. https://tradingeconomics.com/iran/temperature
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2024
    Area covered
    Iran
    Description

    Temperature in Iran decreased to 19.18 celsius in 2024 from 19.61 celsius in 2023. This dataset includes a chart with historical data for Iran Average Temperature.

  20. T

    Iraq Average Temperature

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Iraq Average Temperature [Dataset]. https://tradingeconomics.com/iraq/temperature
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2024
    Area covered
    Iraq
    Description

    Temperature in Iraq decreased to 23.85 celsius in 2024 from 24.06 celsius in 2023. This dataset includes a chart with historical data for Iraq Average Temperature.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
Organization logo

Climate Change: Earth Surface Temperature Data

Exploring global temperatures since 1750

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
zip(88843537 bytes)Available download formats
Dataset updated
May 1, 2017
Dataset authored and provided by
Berkeley Earthhttp://berkeleyearth.org/
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Area covered
Earth
Description

Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

us-climate-change

Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

In this dataset, we have include several files:

Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

  • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
  • LandAverageTemperature: global average land temperature in celsius
  • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
  • LandMaxTemperature: global average maximum land temperature in celsius
  • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
  • LandMinTemperature: global average minimum land temperature in celsius
  • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
  • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
  • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

Other files include:

  • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
  • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
  • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
  • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

The raw data comes from the Berkeley Earth data page.

Search
Clear search
Close search
Google apps
Main menu