12 datasets found
  1. h

    e621-rising-v1-mini

    • huggingface.co
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mister Stallion (2023). e621-rising-v1-mini [Dataset]. https://huggingface.co/datasets/hearmeneigh/e621-rising-v1-mini
    Explore at:
    Dataset updated
    Mar 9, 2023
    Authors
    Mister Stallion
    Description

    Warning: THIS dataset is NOT suitable for use by minors. The dataset contains X-rated/NFSW content.

      E621 Rising: Mini Image Dataset v1
    

    9,999 images (~4GB) downloaded from e621.net with tags. This is a small sample of the E621 Rising: Raw Dataset available here.

      Image Processing
    

    Only jpg and png images were considered Image width and height have been clamped to (0, 4096]px; larger images have been resized to meet the limit Alpha channels have been removed All images have… See the full description on the dataset page: https://huggingface.co/datasets/hearmeneigh/e621-rising-v1-mini.

  2. h

    16xModdedMinecraft

    • huggingface.co
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WARE (2025). 16xModdedMinecraft [Dataset]. https://huggingface.co/datasets/OVAWARE/16xModdedMinecraft
    Explore at:
    Dataset updated
    Jun 9, 2025
    Authors
    WARE
    Description

    This dataset contains a collection of 16x16 RGBA Minecraft assets (blocks and item textures). The assets are standardized in format (RGBA) and resolution (16x16) 13,072 Total Mods 552,234 Total Items 481,701 Total Blocks

      📦 Contents
    

    ✅ Resolution: 16x16 pixels ✅ Format: PNG (RGBA) ✅ Types: Block textures Item textures

    ✅ Color Space: RGBA (with alpha channel)

    Field Type Description

    image Image The 16x16 RGBA texture, loaded as a PIL Image object.

    file_name string… See the full description on the dataset page: https://huggingface.co/datasets/OVAWARE/16xModdedMinecraft.

  3. Data from: METER-ML: A Multi-Sensor Earth Observation Benchmark for...

    • zenodo.org
    application/gzip, bin
    Updated Aug 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryan Zhu; Nicholas Lui; Jeremy Irvin; Jeremy Irvin; Jimmy Le; Sahil Tadwalkar; Chenghao Wang; Zutao Ouyang; Frankie Y. Liu; Andrew Y. Ng; Robert B. Jackson; Bryan Zhu; Nicholas Lui; Jimmy Le; Sahil Tadwalkar; Chenghao Wang; Zutao Ouyang; Frankie Y. Liu; Andrew Y. Ng; Robert B. Jackson (2022). METER-ML: A Multi-Sensor Earth Observation Benchmark for Automated Methane Source Mapping [Dataset]. http://doi.org/10.48550/arxiv.2207.11166
    Explore at:
    application/gzip, binAvailable download formats
    Dataset updated
    Aug 15, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Bryan Zhu; Nicholas Lui; Jeremy Irvin; Jeremy Irvin; Jimmy Le; Sahil Tadwalkar; Chenghao Wang; Zutao Ouyang; Frankie Y. Liu; Andrew Y. Ng; Robert B. Jackson; Bryan Zhu; Nicholas Lui; Jimmy Le; Sahil Tadwalkar; Chenghao Wang; Zutao Ouyang; Frankie Y. Liu; Andrew Y. Ng; Robert B. Jackson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    The METER-ML dataset is a multi-sensor Earth observation dataset containing georeferenced images in the U.S. labeled for the presence or absence of six methane source facilities. More information about how the dataset was constructed can be found at:

    1. The project website
    2. The CDCEO 2022 Workshop publication (please cite this paper when citing the dataset)

    This dataset consists of 85,066 train, 515 validation, and 1,018 test samples, each containing images from NAIP, Sentinel-1, and Sentinel-2. The folder of train images is split into three parts due to its size; you will need to combine them after downloading. The format of each sample is as follows:

    train_dataset/
    [latitude]_[longitude]/
    naip.png
    sentinel-1.npy
    sentinel-2-10m.npy
    sentinel-2-20m.npy
    sentinel-2-60m.npy

    The NAIP image is stored as a 4-channel PNG image with the NIR band in the alpha channel. The other images are stored directly as NumPy arrays. The channels in each image are in the following order:

    sentinel-1: VV, VH
    sentinel-2-10m: red, green, blue, NIR
    sentinel-2-20m: RE1, RE2, RE3, RE4, SWIR1, SWIR2
    sentinel-2-60m: coastal aerosol, water vapor, cirrus


    The labels are found in the corresponding GeoJSON file for each dataset (easily loaded with geopandas), which contains the following columns:

    Latitude: latitude coordinate of the image center
    Longitude: longitude coordinate of the image center
    Type: label of facility or facilities present in the image
    Source: data source the coordinates originally came from
    Image_Folder: folder in the dataset where the image can be found
    geometry: bounding box for the area covered by the image

    If you have questions about the dataset, contact us at:

    bwzhu@cs.stanford.edu, niclui@stanford.edu, jirvin16@cs.stanford.edu

  4. T

    Data for: A strategy to quantify myofibroblast activation on a continuous...

    • dataverse.tdl.org
    application/gzip +1
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Hillsley; Alexander Hillsley (2022). Data for: A strategy to quantify myofibroblast activation on a continuous spectrum [Dataset]. http://doi.org/10.18738/T8/SDMFU3
    Explore at:
    tiff(185280), tiff(726460), tiff(418816), tiff(121692), tiff(618184), tiff(420422), tiff(178160), tiff(145682), tiff(179043), tiff(305682), tiff(374201), tiff(774080), tiff(548834), tiff(1055678), tiff(215682), tiff(408982), tiff(118207), tiff(1034126), tiff(663881), tiff(145714), tiff(1381296), tiff(868842), tiff(700392), tiff(481352), tiff(256624), tiff(176578), tiff(235732), tiff(261294), tiff(1060442), tiff(865660), tiff(495544), tiff(374200), tiff(1500418), tiff(1055658), tiff(208044), tiff(215658), tiff(144122), tiff(374233), tiff(698834), tiff(774082), tiff(1268806), tiff(122906), tiff(116592), tiff(144096), tiff(415688), tiff(305712), tiff(95544), tiff(262910), tiff(144098), tiff(144102), tiff(415679), tiff(545690), tiff(148802), tiff(694122), tiff(1674200), tiff(774180), tiff(181306), tiff(176582), tiff(1270400), tiff(144126), tiff(1621318), tiff(426460), tiff(144124), tiff(215686), tiff(145695), tiff(868840), tiff(276672), tiff(215674), tiff(218834), tiff(1054124), tiff(144080), tiff(308838), tiff(144100), tiff(361338), tiff(308810), tiff(118174), tiff(554010), tiff(420394), tiff(545736), tiff(1674061), tiff(182878), tiff(1074178), tiff(310414), tiff(723982), tiff(870422), tiff(774196), tiff(643960), tiff(66460), tiff(145660), tiff(544124), tiff(815544), tiff(3383982), tiff(118166), tiff(692424), tiff(176574), tiff(481292), tiff(234104), tiff(214126), tiff(813960), tiff(215696), tiff(176600), tiff(554188), tiff(1748842), tiff(781312), tiff(548822), tiff(196672), tiff(1060426), application/gzip(5196728), tiff(1808983), tiff(962966), tiff(1055662), tiff(864122), tiff(723983), tiff(215662), tiff(418834), tiff(414124), tiff(3383983), tiff(548802), tiff(868818), tiff(554126), tiff(144078), tiff(305688), tiff(262912), tiff(3974194), tiff(1054094), tiff(459124), tiff(868828), tiff(493960), tiff(68044), tiff(2474196), tiff(326080), tiff(2934200), tiff(961312), tiff(361310), tiff(1058842), tiff(544122), tiff(608982), tiff(262918), tiff(374077), tiff(618162), tiff(163960), tiff(144106), tiff(308856), tiff(548804), tiff(362936), tiff(145662), tiff(782928), tiff(1060370), tiff(418818), tiff(178182), tiff(365544), tiff(1693960), tiff(781318), tiff(503982), tiff(774138), tiff(622908), tiff(548814), tiff(548808), tiff(414102), tiff(362914), tiff(1055700), tiff(118160), tiff(554172), tiff(118193), tiff(363960), tiff(178206), tiff(308828), tiff(218854), tiff(179126), tiff(700404), tiff(2944096), tiff(698836), tiff(1058786), tiff(868792), tiff(262888), tiff(256592), tiff(305736), tiff(420392), tiff(621282), tiff(376672), tiff(144094), tiff(418842), tiff(286086), tiff(1003960), tiff(774123), tiff(308830), tiff(774173), tiff(865696), tiff(481330), tiff(906460), tiff(868802), tiff(956598), tiff(415684), tiff(145706), tiff(144114), tiff(1448983), tiff(550412), tiff(258214), tiff(1334113), tiff(414076), tiff(258188), tiff(420412), tiff(128044), tiff(414134), tiff(299124), tiff(145686), tiff(93960), tiff(2474182), tiff(1054106), tiff(258186), tiff(255544), tiff(554108), tiff(214076), tiff(214098), tiff(698814), tiff(1748808), tiff(361332), tiff(774104), tiff(262914), tiff(621302), tiff(428044), tiff(220414), tiff(308808), tiff(214080), tiff(1264100), tiff(261328), tiff(925302), tiff(1498836), tiff(176626), tiff(214074), tiff(698848), tiff(374106), tiff(481328), tiff(700446), tiff(1005544), tiff(1674233), tiff(1215544), tiff(276648), tiff(214112), tiff(2255544), tiff(308834), tiff(118194), tiff(2423982), tiff(3974172), tiff(482938), tiff(1334242), tiff(714172), tiff(116604), tiff(1034123), tiff(1965544), tiff(415674), tiff(698824), tiff(178176), tiff(418840), tiff(214100), tiff(176594), tiff(415660), tiff(304078), tiff(215664), tiff(116578), tiff(308826), tiff(214121), tiff(118188), tiff(1498840), tiff(144108), tiff(1623983), tiff(1284156), application/gzip(294478), tiff(1213960), tiff(879354), tiff(568044), tiff(782904), tiff(418826), tiff(2054222), tiff(868808), tiff(865671), tiff(148828), tiff(176628), tiff(361302), tiff(278232), tiff(218802), tiff(2253960), tiff(234138), tiff(253960), tiff(774067), tiff(165544), tiff(1060406), tiff(1054110), tiff(176612), tiff(1058782), tiff(1034218), tiff(1876580), tiff(621324), tiff(868822), tiff(145688), tiff(782876), tiff(774126), tiff(323982), tiff(118162), tiff(663883), tiff(145676), tiff(545670), tiff(361322), tiff(374070), tiff(1334178), tiff(2018864), tiff(1054082), tiff(144104), tiff(214106), tiff(1268792), tiff(356598), tiff(310376), tiff(144076), tiff(144082), tiff(305706), tiff(176576), tiff(554102), tiff(176602), tiff(418856), tiff(1283983), tiff(3434176), tiff(374123), tiff(774100), tiff(1034099), tiff(218808), tiff(176604), tiff(545700), tiff(695676), tiff(645544), tiff(248983), tiff(698840), tiff(622884), tiff(545662), tiff(659129), tiff(361304), tiff(868838), tiff(1034172), tiff(1494118), tiff(548828), tiff(305852), tiff(482936), tiff(781306), tiff(983983), tiff(1748868), tiff(2934099), tiff(616602), tiff(868832), tiff(3455048), tiff(554101), tiff(1674173), tiff(308840), tiff(356578), tiff(2054262), tiff(1495736), tiff(145658), tiff(621326), tiff(218828), tiff(1674242), tiff(258208), tiff(234098), tiff(698828), tiff(1055712), tiff(2054103), tiff(305662), tiff(2618794), tiff(179098), tiff(2474131), tiff(1334105), tiff(1106460), tiff(2003982), tiff(148834), tiff(1745686), tiff(214094), tiff(481336), tiff(261326), tiff(1674174), tiff(181330), tiff(550432), tiff(256604), tiff(181328), tiff(545678), tiff(774214), tiff(256594), tiff(870420), tiff(248982), tiff(415694), tiff(1034176), tiff(870378), tiff(1500416), tiff(299098), tiff(310440), tiff(414082), tiff(1058796), tiff(220406), tiff(304068), tiff(182936), tiff(145684), tiff(873374), tiff(2018836), tiff(362918), tiff(554093), tiff(1156614), tiff(415700), tiff(262892), tiff(118208), tiff(418832), tiff(1055694), tiff(258176), tiff(2014130), tiff(1268848), tiff(116600), tiff(1034112), tiff(420400), tiff(304056), tiff(256568), tiff(179138), tiff(2054099), tiff(362886), tiff(144074), tiff(550400), tiff(215694), tiff(1022913), tiff(215708), tiff(516446), tiff(1674198), tiff(700394), tiff(358162), tiff(145680), tiff(1494078), tiff(868800), tiff(415676), application/gzip(333437), tiff(258160), tiff(1495688), tiff(548782), tiff(1674192), tiff(566460), tiff(1054080), tiff(178162), tiff(728044), tiff(2003983), tiff(774079), tiff(261302), tiff(1128982), tiff(554109), tiff(698808), tiff(113282), tiff(308044), tiff(247676), application/gzip(79595930), tiff(544078), tiff(654738), tiff(545753), tiff(622890), tiff(214114), tiff(116598), tiff(361350), tiff(695664), tiff(215702), tiff(1268834), tiff(145696), tiff(310418), tiff(304094), tiff(1695544), tiff(415638), tiff(214102), tiff(415664), tiff(215660), tiff(214096), tiff(261352), tiff(618160), tiff(420388), tiff(2308812), tiff(150406), tiff(145710), tiff(418838), tiff(6538841), tiff(258196), tiff(304082), tiff(305678), tiff(308854), tiff(145674), tiff(304100), tiff(182890), tiff(2614098), tiff(548850), tiff(956574), tiff(863071), tiff(198256), tiff(1533368), tiff(1058864), tiff(214078), tiff(305710), tiff(361316), tiff(234148), tiff(698802), tiff(415690), tiff(544054), tiff(1674095), tiff(262894), tiff(220386), tiff(176596), tiff(3434200), tiff(1334124), tiff(554079), tiff(1264076), tiff(145690), tiff(1623982), tiff(145698), tiff(1058812), tiff(256634), tiff(234135), tiff(481338), tiff(420446), tiff(548830), tiff(145678), application/gzip(21794), tiff(418802), tiff(299099), tiff(1338834), tiff(1034209), tiff(145736), tiff(183716), tiff(545715), tiff(2054126), application/gzip(193420009), tiff(2563960), tiff(415696), tiff(220412), tiff(144130), tiff(313396), tiff(1963960), tiff(215678), tiff(1060376), tiff(1058840), tiff(418806), tiff(2054178), tiff(1058816), tiff(305690), tiff(304104), tiff(544082), tiff(310388), tiff(1268832), tiff(694124), tiff(621310), tiff(176598), tiff(308802), tiff(554220), tiff(698804), tiff(181304), tiff(116576), tiff(545706), tiff(1498824), tiff(145708), tiff(406974), tiff(481304), tiff(361328), tiff(150414), tiff(545699), tiff(2423983), tiff(1498842), tiff(1498822), tiff(1674176), tiff(420396), tiff(695684), tiff(1748784), tiff(415680), tiff(1055688), tiff(256600), tiff(622932), tiff(261382), tiff(347274), tiff(698806), tiff(1494098), tiff(782892), tiff(870418), tiff(2054198), tiff(1334077), tiff(418882), tiff(310412), tiff(544056), tiff(554131), tiff(420414), tiff(865662), tiff(218806), tiff(815561), tiff(304122), tiff(2934236), tiff(418828), tiff(290806), tiff(1270446), tiff(1058850), tiff(261332), tiff(234099), tiff(234124), tiff(214104), tiff(361300), tiff(306460), tiff(545694), tiff(148806), tiff(179124), tiff(374100), tiff(256582), tiff(310392), tiff(374126), tiff(554080), tiff(2014146), tiff(903829), tiff(698856), tiff(256626), tiff(414078), tiff(700414), tiff(1443960), tiff(621342), tiff(182954), tiff(1621342), tiff(1034101), tiff(215684), tiff(414056), tiff(476624), tiff(2951160), tiff(182914), tiff(873289), tiff(2474176), tiff(695682), tiff(925419), tiff(781350), tiff(3974180), tiff(304106), tiff(782870), tiff(1054128), tiff(234097), tiff(374112), tiff(698818), tiff(1058834), tiff(774077), tiff(544076), tiff(188434), tiff(374080), tiff(441144), tiff(1334081), tiff(1058824), tiff(1498816), tiff(358188), tiff(695660), tiff(700398), tiff(962945), tiff(2014124), tiff(2054194), tiff(5123983), tiff(548840), tiff(698816), tiff(698822), tiff(694102), tiff(261306), tiff(234137), tiff(414046), tiff(145664), tiff(215688), tiff(206460), tiff(1183829), tiff(1283982), tiff(258184), tiff(1674214), tiff(1060440), tiff(1334209), tiff(262908), tiff(145703), tiff(1149378), tiff(1566460), tiff(1055690), tiff(2054174), tiff(2308862), tiff(414074), tiff(1881302), tiff(308836), tiff(181296), tiff(374170), tiff(694078), tiff(418808), tiff(1494126), tiff(310400), tiff(420410), tiff(463698), tiff(418852), tiff(621334), tiff(3923983), tiff(700386), tiff(1034080), tiff(261330), tiff(700400), tiff(594900), tiff(415708), tiff(361308), tiff(545674), tiff(548818), tiff(554095), tiff(374102), tiff(548790), tiff(145677), tiff(118176), tiff(1054098), tiff(544070), tiff(2565544), tiff(2934220), tiff(1268812), tiff(234209), tiff(182906), tiff(234154), tiff(1674077), tiff(116582), tiff(427332), tiff(308790), tiff(1674094), tiff(420436), tiff(214090), tiff(1034081)Available download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    Texas Data Repository
    Authors
    Alexander Hillsley; Alexander Hillsley
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    4 channel images of cells used in the manuscript channel 1: F-Actin channel 2: alpha smooth muscle actin channel 3: DAPI channel 4: Phase-contrast

  5. M

    Next-Generation Intrusion Prevention System Market Reflects Growth

    • scoop.market.us
    Updated Apr 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Scoop (2025). Next-Generation Intrusion Prevention System Market Reflects Growth [Dataset]. https://scoop.market.us/next-generation-intrusion-prevention-system-market-news/
    Explore at:
    Dataset updated
    Apr 29, 2025
    Dataset authored and provided by
    Market.us Scoop
    License

    https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    US Tariff Impact on Market

    US tariffs on imported components, particularly semiconductors and networking equipment, could pose challenges for the next-generation intrusion prevention system (NGIPS) market. Many NGIPS solutions rely on these imported parts to build their hardware, and increased tariffs can raise production costs.

    This could lead to higher prices for end-users, potentially slowing down adoption rates, especially among small and medium-sized businesses (SMBs) that are more price-sensitive. Additionally, these tariffs may disrupt supply chains, delaying product releases and updates, which could impact companies' ability to stay competitive. Increased costs and potential delays may also affect market leaders, making it difficult for them to offer affordable and timely solutions.

    ➤➤➤ Experience the power of insights here @ https://market.us/report/next-generation-intrusion-prevention-system-market/free-sample/

    https://scoop.market.us/wp-content/uploads/2025/04/US-Tariff-Impact-Analysis-in-2025.png" alt="US Tariff Impact Analysis in 2025" class="wp-image-53983">

    Impact on Sectors (Tariff Percentage Impact)

    • Hardware Components (5-7%)
    • Networking Equipment (4-6%)
    • Cloud Services (3-5%)

    Economic Impact

    US tariffs could increase production costs for NGIPS companies, particularly on hardware components such as semiconductors and networking equipment. This could lead to higher prices for end-users, which might reduce demand from price-sensitive businesses, especially in SMBs. The increased costs may also reduce profitability in the short term.

    Geographical Impact

    The US market for NGIPS may experience slower growth due to tariffs affecting key components sourced internationally. This could increase the price of security solutions, especially in North America. Conversely, other regions, such as Asia-Pacific, where tariff barriers are lower, might experience faster adoption and expansion of NGIPS technologies.

    Business Impact

    The imposition of tariffs could limit the ability of NGIPS companies to deliver affordable and timely solutions. Increased production costs could lead to higher prices for security systems, reducing demand in cost-sensitive sectors. Additionally, delays in product development due to tariff-related disruptions could harm market competitiveness, especially in North America.

  6. 2023 NOAA NGS MHW Ortho-rectified 4-band Mosaic of Mississippi Sound,...

    • fisheries.noaa.gov
    • gimi9.com
    • +1more
    geotiff
    Updated Jan 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Geodetic Survey (2024). 2023 NOAA NGS MHW Ortho-rectified 4-band Mosaic of Mississippi Sound, Mississippi [Dataset]. https://www.fisheries.noaa.gov/inport/item/71886
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jan 1, 2024
    Dataset provided by
    U.S. National Geodetic Survey
    Time period covered
    Jun 25, 2023 - Jul 2, 2023
    Area covered
    Description

    This data set contains 4-band ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative. They are 8 bit RGB and NIR band stacked mosaics with an alpha channel. The source imagery was acquired from 20230625 - 20230702 with an Applanix Digital Sensor System (DSS). The original images were acquired at a higher resolution to support t...

  7. Z

    Data from: UIBVFEDPlus-Light: Virtual facial expression dataset with...

    • data.niaid.nih.gov
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mascaró Oliver, Miquel (2024). UIBVFEDPlus-Light: Virtual facial expression dataset with lighting [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10377462
    Explore at:
    Dataset updated
    Jul 8, 2024
    Dataset authored and provided by
    Mascaró Oliver, Miquel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This database, named UIBVFEDPlus-Light, is an extension of the previously published UIBVFED virtual facial expression dataset. It includes 100 characters, four lighting configurations and 13200 images. Images are in png format with a resolution of 1080x1920 RGB, without alpha channel and an average size of 2.0 MB.The images represent virtual characters reproducing FACS-based facial expressions. Expressions are classified based on the six universal emotions (Anger, Disgust, Fear, Joy, Sadness, and Surprise) labeled according to Faigin’s classification.The dataset aims to give researchers access to data they may use to support their research and generate new knowledge. In particular, to study the effect of lighting conditions in the fields of facial expression and emotion recognition.

  8. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.


    Method:
    The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.


    Single merged composite GeoTiff:
    The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.


    Source datasets:
    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
    Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT
    This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
    CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
    CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
    CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
    This is the high resolution imagery used to create the map of Mer.

    World_AIMS_Marine-satellite-imagery
    The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.


    Data Location:
    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.


    Change Log:
    2025-05-12: Eric Lawrey
    Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.

    2025-02-04: Eric Lawrey
    Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.

    2023-11-22: Eric Lawrey
    Added the data and maps for close up of Mer.
    - 01-data/TS_DNRM_Mer-aerial-imagery/
    - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
    - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
    Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    2023-03-02: Eric Lawrey
    Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

  9. g

    Landsat 5 Satellite Imagery for selected areas of Great Barrier Reef and...

    • gimi9.com
    Updated Oct 15, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). Landsat 5 Satellite Imagery for selected areas of Great Barrier Reef and Torres Strait (NERP TE 13.1, eAtlas AIMS, source: NASA) | gimi9.com [Dataset]. https://gimi9.com/dataset/au_landsat-5-satellite-imagery-for-selected-areas-of-great-barrier-reef-and-torres-strait-nerp-te-/
    Explore at:
    Dataset updated
    Oct 15, 2014
    Area covered
    Torres Strait, Great Barrier Reef
    Description

    This dataset contains Landsat 5 imagery for selected areas of Queensland, currently Torres Strait and around Lizard Island and Cape Tribulation. This collection was made as a result of the development of the Torres Strait Features dataset. It includes a number (typically 4 - 8) of selected Landsat images for each scene from the entire Landsat 5 archive. These images were selected for having low cloud cover and clear water. The aim of this collection was to allow investigation of the marine features. The complete catalogue of Landsat 5 for scenes 96_70, 96_71, 97_67, 97_68, 98_66, 98_67, 98_68_99_66, 99_67 and 99_68 were downloaded from the Google Earth Engine site ( https://console.developers.google.com/storage/earthengine-public/landsat/ ). The images were then processed into low resolution true colour using GDAL. They were then reviewed for picture clarity and the best ones were selected and processed at full resolution to be part of this collection. The true colour conversion was achieved by applying level adjustment to each channel to ensure that the tonal scaling of each channel was adjusted to give a good overall colour balance. This effectively set the black point of the channel and the gain. This adjustment was applied consistently to all images. Red: Channel B3, Black level 8, White level 58 Green: Channel B2, Black level 10, White level 55 Blue: Channel B1, Black level 32, White level 121 Note: A constant level adjustment was made to the images regardless of the time of the year that the images were taken. As a result images in the summer tend to be brighter than those in the winter. After level adjustment the three channels were merged into a single colour image using gdal_merge. The black surround on the image was then made transparent using the GDAL nearblack command. This collection consists of 59 images saved as 4 channel (Red, Green, Blue, Alpha) GeoTiff images with LZW compression (lossless) and internal overviews with a WGS 84 UTM 54N projection. Each of the individual images can be downloaded from the eAtlas map client (Overlay layers: eAtlas/Imagery Base Maps Earth Cover/Landsat 5) or as a collection of all images for each scene. Data Location: This dataset is filed in the eAtlas enduring data repository at: data\NERP-TE\13.1_eAtlas\QLD_NERP-TE-13-1_eAtlas_Landsat-5_1988-2011

  10. T

    Data for: A Deep Learning Approach to Identify and Segment α-Smooth Muscle...

    • dataverse.tdl.org
    tiff
    Updated Aug 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Hillsley; Alexander Hillsley (2021). Data for: A Deep Learning Approach to Identify and Segment α-Smooth Muscle Actin Stress Fiber Positive Cells [Dataset]. http://doi.org/10.18738/T8/LRWTYJ
    Explore at:
    tiff(286376), tiff(4147472), tiff(333026), tiff(11059322), tiff(156310), tiff(5529722), tiff(29962), tiff(211604), tiff(16589072), tiff(27220), tiff(785154), tiff(747936), tiff(133534), tiff(289040), tiff(34394), tiff(29310), tiff(136882), tiff(31908), tiff(28284), tiff(126172), tiff(642274), tiff(960710), tiff(29754), tiff(265610), tiff(171858), tiff(87048), tiff(29724), tiff(312624), tiff(91082), tiff(218518), tiff(27460), tiff(1382548), tiff(477028), tiff(425006), tiff(100430), tiff(31376), tiff(26376), tiff(660244), tiff(179654), tiff(724702), tiff(97264), tiff(114602), tiff(1166826), tiff(497632), tiff(512342), tiff(330136), tiff(31754), tiff(1019220), tiff(145904), tiff(246068), tiff(507666), tiff(253924), tiff(32090), tiff(183522), tiff(434440), tiff(612540), tiff(258454), tiff(26704), tiff(147682), tiff(189850), tiff(32112), tiff(399696), tiff(1064472), tiff(319700), tiff(503072), tiff(415392), tiff(245310), tiff(28784), tiff(34004), tiff(221036), tiff(25806), tiff(241754), tiff(466634), tiff(877168), tiff(180064), tiff(27616), tiff(879430), tiff(31422), tiff(114072), tiff(127772), tiff(817624), tiff(29676), tiff(125762), tiff(210762), tiff(29122), tiff(29738), tiff(29226), tiff(107684), tiff(335280), tiff(125342), tiff(272126), tiff(868538), tiff(215536), tiff(27466), tiff(985496), tiff(147296), tiff(973262), tiff(265998), tiff(188390), tiff(61522), tiff(146928), tiff(32552), tiff(31614), tiff(53374), tiff(31326), tiff(144638), tiff(654792), tiff(30396), tiff(419032), tiff(186818), tiff(292532), tiff(221186), tiff(797790), tiff(275120), tiff(93902), tiff(32274), tiff(291790), tiff(194676), tiff(189826), tiff(31246), tiff(227176), tiff(250848), tiff(310120), tiff(1215880), tiff(206630), tiff(30166), tiff(27758), tiff(343750), tiff(125454), tiff(292180), tiff(96830), tiff(245118), tiff(291638), tiff(28174), tiff(577362), tiff(29784), tiff(364046), tiff(414034), tiff(591404), tiff(271292), tiff(200718), tiff(69462), tiff(199506), tiff(65564), tiff(28724), tiff(99060), tiff(29148), tiff(28124), tiff(361172), tiff(28300), tiff(1007462), tiff(480528), tiff(80216), tiff(307616), tiff(1110110), tiff(945042), tiff(144908), tiff(208990), tiff(92072), tiff(628390), tiff(101186), tiff(929028), tiff(373834), tiff(26652), tiff(134726), tiff(96968), tiff(431346), tiff(234288), tiff(78444), tiff(243702), tiff(305818), tiff(220936), tiff(329146), tiff(904700), tiff(920370), tiff(1194160), tiff(28886), tiff(122144), tiff(778298), tiff(33202), tiff(172248), tiff(243832), tiff(29770), tiff(765342), tiff(287768), tiff(28568), tiff(322134), tiff(735746), tiff(201408), tiff(112354), tiff(335764), tiff(837468), tiff(1190770), tiff(504376), tiff(196114), tiff(132996), tiff(31252), tiff(31354), tiff(276520), tiff(156878), tiff(949070), tiff(33494), tiff(240236), tiff(30112), tiff(153042), tiff(155404), tiff(30572), tiff(1121290), tiff(168432), tiff(189682), tiff(627120), tiff(434278), tiff(90952), tiff(98178), tiff(84328), tiff(814272), tiff(222298), tiff(176826), tiff(165668), tiff(881970), tiff(222128), tiff(32394), tiff(636212), tiff(909492), tiff(135572), tiff(896346), tiff(27274), tiff(26632), tiff(107504), tiff(138568), tiff(64652), tiff(72366), tiff(30194), tiff(347566), tiff(28386), tiff(1382736), tiff(197778), tiff(338054), tiff(241002), tiff(349434), tiff(249872), tiff(29112), tiff(576804), tiff(258786), tiff(166444), tiff(276222), tiff(26730), tiff(290832), tiff(1234406), tiff(779202), tiff(402906), tiff(30988), tiff(1080814), tiff(347426), tiff(790638), tiff(42214), tiff(69126), tiff(31040), tiff(357376), tiff(77412), tiff(860466), tiff(354198), tiff(74814), tiff(75812), tiff(28786), tiff(250022), tiff(213950), tiff(135394), tiff(166936), tiff(87898), tiff(124400), tiff(249458), tiff(130418), tiff(170548), tiff(31030), tiff(362774), tiff(262448), tiff(251106), tiff(152558), tiff(447352), tiff(30150), tiff(1029062), tiff(436024), tiff(253740), tiff(217108), tiff(29268), tiff(452136), tiff(579828), tiff(345602), tiff(296296), tiff(36108), tiff(330746), tiff(140138), tiff(161424), tiff(270812), tiff(832752), tiff(394868), tiff(100424), tiff(29822), tiff(135780), tiff(28276), tiff(113192), tiff(447500), tiff(318952), tiff(87788), tiff(693070), tiff(702358), tiff(502106), tiff(265606), tiff(118046), tiff(451146), tiff(99988), tiff(1053982), tiff(443900), tiff(543718), tiff(929266), tiff(214908), tiff(314254), tiff(152416), tiff(92298), tiff(470200), tiff(270066), tiff(196708), tiff(957550), tiff(208824), tiff(29006), tiff(275454), tiff(27636), tiff(1050476), tiff(254336), tiff(227648), tiff(256410), tiff(28084), tiff(446268), tiff(287494), tiff(108948), tiff(68404), tiff(54278), tiff(243496), tiff(29794), tiff(439694), tiff(32796), tiff(200118), tiff(384478), tiff(28128), tiff(263948), tiff(26236), tiff(93388), tiff(70958), tiff(308150), tiff(329530), tiff(105122), tiff(281194), tiff(238868), tiff(400150), tiff(29000), tiff(456208), tiff(133380), tiff(26250), tiff(336948), tiff(549170), tiff(238152), tiff(375922), tiff(222906), tiff(299308), tiff(246732), tiff(260954), tiff(1006236), tiff(121296), tiff(214182), tiff(269656), tiff(631130), tiff(120784), tiff(26930), tiff(138252), tiff(267586), tiff(29180), tiff(225642), tiff(394898), tiff(28382), tiff(121762), tiff(144686), tiff(31138), tiff(733080), tiff(965492), tiff(512596), tiff(276954), tiff(1023266), tiff(1103972), tiff(25226), tiff(265678), tiff(354184), tiff(574782), tiff(104344), tiff(29194), tiff(315570), tiff(596628), tiff(221298), tiff(33946), tiff(28932), tiff(27170), tiff(358344), tiff(124638), tiff(128150), tiff(31924), tiff(100206), tiff(92676), tiff(34212), tiff(284964), tiff(912362), tiff(271482), tiff(32698), tiff(1064790), tiff(381056), tiff(30032), tiff(76078), tiff(1194496), tiff(359824), tiff(230138), tiff(978450), tiff(288952), tiff(78128), tiff(200682), tiff(109998), tiff(32656), tiff(1112646), tiff(31314), tiff(33582), tiff(345648), tiff(28022), tiff(121372), tiff(34334), tiff(361092), tiff(387288), tiff(28256), tiff(146348), tiff(99586), tiff(258088), tiff(596766), tiff(26100), tiff(941266), tiff(30230), tiff(457544), tiff(103154), tiff(249956), tiff(432698), tiff(125098), tiff(87904), tiff(87380), tiff(171094), tiff(622710), tiff(87638), tiff(913344), tiff(83078), tiff(27732), tiff(74854), tiff(35778), tiff(29730), tiff(29666), tiff(104950), tiff(51108), tiff(317808), tiff(1017994), tiff(183442), tiff(77300), tiff(354648), tiff(839786), tiff(32230), tiff(40080), tiff(184892), tiff(314472), tiff(29092), tiff(278560), tiff(919450), tiff(102786), tiff(262950), tiff(265334), tiff(221390), tiff(321342), tiff(32798), tiff(255382), tiff(25638), tiff(225478), tiff(97678), tiff(305484), tiff(362042), tiff(595256), tiff(31028), tiff(1070642), tiff(928598), tiff(162892), tiff(27580), tiff(610612), tiff(1057924), tiff(446826), tiff(936328), tiff(668936), tiff(383824), tiff(33848), tiff(30530), tiff(97960), tiff(355390), tiff(838702), tiff(26160), tiff(27230), tiff(315090), tiff(172828), tiff(122342), tiff(655098), tiff(328140), tiff(95236), tiff(1094778), tiff(808090), tiff(204322), tiff(30942), tiff(27000), tiff(935370), tiff(33088), tiff(268026), tiff(912996), tiff(314310), tiff(109782), tiff(253032), tiff(388662), tiff(107420), tiff(25760), tiff(279016), tiff(102024), tiff(27928), tiff(976502), tiff(53322), tiff(344356), tiff(147314), tiff(1128646), tiff(849616), tiff(254122), tiff(151294), tiff(817582), tiff(365512), tiff(248786), tiff(106102), tiff(343988), tiff(186648), tiff(124972), tiff(1013708), tiff(31302), tiff(355436), tiff(965428), tiff(31680), tiff(313546), tiff(32120), tiff(357696), tiff(1121496), tiff(96446), tiff(250512), tiff(787602), tiff(126374), tiff(27442), tiff(30106), tiff(32784), tiff(133996), tiff(616090), tiff(72182), tiff(179476), tiff(1058280), tiff(91016), tiff(26110), tiff(986752), tiff(253316), tiff(852250), tiff(1069662), tiff(192340), tiff(149364), tiff(131916), tiff(27048), tiff(377942), tiff(316218), tiff(244900), tiff(253270), tiff(146400), tiff(31608), tiff(915180), tiff(98056), tiff(326316), tiff(70774), tiff(283310), tiff(241430), tiff(29244), tiff(1142856), tiff(339880), tiff(122894), tiff(136264), tiff(207158), tiff(28814), tiff(28146), tiff(24808), tiff(186464), tiff(184112), tiff(27028), tiff(29352), tiff(132500), tiff(95816), tiff(108292), tiff(139434), tiff(644008), tiff(295716), tiff(106694), tiff(910600), tiff(373748), tiff(1057216), tiff(939578), tiff(233108), tiff(63698), tiff(118706), tiff(502936), tiff(120012), tiff(27884), tiff(295350), tiff(265230), tiff(987516), tiff(97296), tiff(234038), tiff(27146), tiff(225314), tiff(255778), tiff(461910), tiff(988968), tiff(230256), tiff(270926), tiff(28806), tiff(305802), tiff(343146), tiff(303882), tiff(29828), tiff(747578), tiff(1016008), tiff(298508), tiff(296458), tiff(388282), tiff(129004), tiff(48196), tiff(34746), tiff(85928), tiff(93248), tiff(25856), tiff(388696), tiff(178394), tiff(161916), tiff(135628), tiff(26864), tiff(121942), tiff(253168), tiff(121708), tiff(278202), tiff(147874), tiff(1104272), tiff(332782), tiff(531668), tiff(30946), tiff(614092), tiff(209702), tiff(29456), tiff(201030), tiff(99440), tiff(27666), tiff(120008), tiff(787280), tiff(453372), tiff(499314), tiff(150292), tiff(261138), tiff(30638), tiff(32104), tiff(249548), tiff(302360), tiff(1097670), tiff(279690), tiff(283020), tiff(705766), tiff(90028), tiff(475530), tiff(96262), tiff(200258), tiff(150416), tiff(98346), tiff(31866), tiff(28882), tiff(33338), tiff(28458), tiff(79702), tiff(165248), tiff(918408), tiff(134318), tiff(609960), tiff(193834), tiff(1384584), tiff(28418), tiff(335350), tiff(1068710), tiff(27994), tiff(759592), tiff(31672), tiff(84032), tiff(292170), tiff(31742), tiff(211596), tiff(895516), tiff(286302), tiff(668110), tiff(106480), tiff(1212376), tiff(416114), tiff(818822), tiff(32768), tiff(349094), tiff(753518), tiff(279222), tiff(114144), tiff(145482), tiff(127312), tiff(496230), tiff(90760), tiff(963134), tiff(937110), tiff(157304), tiff(153670), tiff(311638), tiff(150454), tiff(76462), tiff(980316), tiff(142838), tiff(1203582), tiff(161000), tiff(332244), tiff(263274), tiff(89658), tiff(152834), tiff(25522), tiff(967544), tiff(30834), tiff(669028), tiff(118898), tiff(285266), tiff(95624), tiff(1066554), tiff(27646), tiff(334910), tiff(786580), tiff(286618), tiff(147356), tiff(158946), tiff(176784), tiff(27126), tiff(33110), tiff(264442), tiff(284396), tiff(1069844), tiff(1198288), tiff(28294), tiff(346916), tiff(32156), tiff(274824), tiff(924154), tiff(30438), tiff(145834), tiff(26928), tiff(1003320), tiff(277118), tiff(84010), tiff(749636), tiff(77996), tiff(30870), tiff(99464), tiff(147208), tiff(87754), tiff(174728), tiff(911782), tiff(31678), tiff(361276), tiff(955540), tiff(92922), tiff(526642), tiff(92682), tiff(959750), tiff(243646), tiff(1032794), tiff(33254), tiff(1083884), tiff(266854), tiff(165104), tiff(135116), tiff(145158), tiff(29236), tiff(28706)Available download formats
    Dataset updated
    Aug 26, 2021
    Dataset provided by
    Texas Data Repository
    Authors
    Alexander Hillsley; Alexander Hillsley
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Training and test datasets for the deep learning model created in: A Deep Learning Approach to Identify and Segment α-Smooth Muscle Actin Stress Fiber Positive Cells. Contains 300, 3 channel training images (red: F-actin, green: a-SMA, blue: DAPI), rgb composite images, and segmentation labels (label 3 classes: background, a-SMA SF-, and a-SMA SF+)

  11. Z

    HeLa "Kyoto" cells under the scope

    • data.niaid.nih.gov
    Updated Jul 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Romain Guiet (2024). HeLa "Kyoto" cells under the scope [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6139957
    Explore at:
    Dataset updated
    Jul 17, 2024
    Dataset authored and provided by
    Romain Guiet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Name: HeLa “Kyoto” cells under the scope

    Microscope: Perkin Elmer Operetta microscope with a 20x N.A. 0.8 objective and an Andor Zyla 5.5 camera.

    Microscopy data type: The time-lapse datasets were acquired every 15 minutes, for 60 hours. From the individual plan images (channels, time-points, field of view exported by the PerkinElmer software Harmony) multi-dimension images were generated using the Operetta_Importer-0.1.21 with a downscaling of 4.

    Channel 1 : Low Contrast DPC (Digital Phase Contrast)

    Channel 2 : High Contrast DPC

    Channel 3 : Brightfield

    Channel 4 : EGFP-α-tubulin

    Channel 5 : mCherry-H2B

    File format: .tif (16-bit)

    Image size: 540x540 (Pixel size: 0.299 nm), 5c, 1z , 240t

    Cell type: HeLa “Kyoto” cells, expressing EGFP-α-tubulin and mCherry-H2B ( Schmitz et al, 2010 )

    Protocol: Cells were resuspended in Imaging media and were seeded in a microscopy grade 96 wells plate ( CellCarrier Ultra 96, Perkin Elmer). The day after seeding, and for 60 hours, images were acquired in 3 wells, in 25 different fields of view, every 15 minutes.

    Imaging media: DMEM red-phenol-free media (FluoroBrite™ DMEM, Gibco) complemented with Fetal Calf Serum and Glutamax.

    NOTE: This dataset was used to automatically generate label images in the following Zenodo entry: https://doi.org/10.5281/zenodo.6140064

    NOTE: This dataset was used to train the cellpose models in the following Zenodo entry: https://doi.org/10.5281/zenodo.6140111

  12. CellProfiler Pipeline 1.

    • plos.figshare.com
    hdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karina Diaz; Ciara T. Hu; Youngmee Sul; Beth A. Bromme; Nicolle D. Myers; Ksenia V. Skorohodova; Anshu P. Gounder; Jason G. Smith (2023). CellProfiler Pipeline 1. [Dataset]. http://doi.org/10.1371/journal.ppat.1009018.s001
    Explore at:
    hdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Karina Diaz; Ciara T. Hu; Youngmee Sul; Beth A. Bromme; Nicolle D. Myers; Ksenia V. Skorohodova; Anshu P. Gounder; Jason G. Smith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This CellProfiler 3.1.9 pipeline creates a maximum intensity z-projection of the image stack from each channel. (CPPROJ)

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Mister Stallion (2023). e621-rising-v1-mini [Dataset]. https://huggingface.co/datasets/hearmeneigh/e621-rising-v1-mini

e621-rising-v1-mini

hearmeneigh/e621-rising-v1-mini

E621 Rising: Mini Image Dataset v1

Explore at:
Dataset updated
Mar 9, 2023
Authors
Mister Stallion
Description

Warning: THIS dataset is NOT suitable for use by minors. The dataset contains X-rated/NFSW content.

  E621 Rising: Mini Image Dataset v1

9,999 images (~4GB) downloaded from e621.net with tags. This is a small sample of the E621 Rising: Raw Dataset available here.

  Image Processing

Only jpg and png images were considered Image width and height have been clamped to (0, 4096]px; larger images have been resized to meet the limit Alpha channels have been removed All images have… See the full description on the dataset page: https://huggingface.co/datasets/hearmeneigh/e621-rising-v1-mini.

Search
Clear search
Close search
Google apps
Main menu