https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset comprises 16.7k images and 2 annotation files, each in a distinct format. The first file, labeled "Label," contains annotations with the original scale, while the second file, named "yolo_format_labels," contains annotations in YOLO format. The dataset was obtained by employing the OIDv4 toolkit, specifically designed for scraping data from Google Open Images. Notably, this dataset exclusively focuses on face detection.
This dataset offers a highly suitable resource for training deep learning models specifically designed for face detection tasks. The images within the dataset exhibit exceptional quality and have been meticulously annotated with bounding boxes encompassing the facial regions. The annotations are provided in two formats: the original scale, denoting the pixel coordinates of the bounding boxes, and the YOLO format, representing the bounding box coordinates in normalized form.
The dataset was meticulously curated by scraping relevant images from Google Open Images through the use of the OIDv4 toolkit. Only images that are pertinent to face detection tasks have been included in this dataset. Consequently, it serves as an ideal choice for training deep learning models that specifically target face detection tasks.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Image Dataset of face images for compuer vision tasks
Dataset comprises 500,600+ images of individuals representing various races, genders, and ages, with each person having a single face image. It is designed for facial recognition and face detection research, supporting the development of advanced recognition systems. By leveraging this dataset, researchers and developers can enhance deep learning models, improve face verification and face identification techniques, and refine⦠See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/face-recognition-image-dataset.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Face Recognition, Face Detection, Male Photo Dataset šØ
If you are interested in biometric data - visit our website to learn more and buy the dataset :)
110,000+ photos of 74,000+ men from 141 countries. The dataset includes photos of people's faces. All people presented in the dataset are men. The dataset contains a variety of images capturing individuals from diverse backgrounds and age groups. Our dataset will diversify your data by adding more photos of men of⦠See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/male-selfie-image-dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Expressions
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Dataset Description:
The dataset comprises a collection of photos of people, organized into folders labeled "women" and "men." Each folder contains a significant number of images to facilitate training and testing of gender detection algorithms or models.
The dataset contains a variety of images capturing female and male individuals from diverse backgrounds, age groups, and ethnicities.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F1c4708f0b856f7889e3c0eea434fe8e2%2FFrame%2045%20(1).png?generation=1698764294000412&alt=media" alt="">
This labeled dataset can be utilized as training data for machine learning models, computer vision applications, and gender detection algorithms.
The dataset is split into train and test folders, each folder includes: - folders women and men - folders with images of people with the corresponding gender, - .csv file - contains information about the images and people in the dataset
keywords: biometric system, biometric system attacks, biometric dataset, face recognition database, face recognition dataset, face detection dataset, facial analysis, gender detection, supervised learning dataset, gender classification dataset, gender recognition dataset
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Dataset of face images with different angles and head positions
Dataset contains 23,110 individuals, each contributing 28 images featuring various angles and head positions, diverse backgrounds, and attributes, along with 1 ID photo. In total, the dataset comprises over 670,000 images in formats such as JPG and PNG. It is designed to advance face recognition and facial recognition research, focusing on person re-identification and recognition systems. By utilizing this dataset⦠See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/face-re-identification-image-dataset.
Instagram Faces Image dataset with diverse single-face images for facial recognition, anti-spoofing, and computer vision
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Similar face recognition has always been one of the most challenging research directions in face recognition.This project shared similar face images (SFD.zip) that we have collected so far. All images are labeld and collected from publicly available datasets such as LFW, CASIA-WebFace.We will continue to collect larger-scale data and continue to update this project.Because the data set is too large, we uploaded a compressed zip file (SFD.zip). Meanwhile here we upload a few examples for everyone to view.email: ileven@shu.edu.cn
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Middle Eastern Human Face with Occlusion Dataset, carefully curated to support the development of robust facial recognition systems, occlusion detection models, biometric identification technologies, and KYC verification tools. This dataset provides real-world variability by including facial images with common occlusions, helping AI models perform reliably under challenging conditions.
The dataset comprises over 3,000 high-quality facial images, organized into participant-wise sets. Each set includes:
To ensure robustness and real-world utility, images were captured under diverse conditions:
Each image is paired with detailed metadata to enable advanced filtering, model tuning, and analysis:
This rich metadata helps train models that can recognize faces even when partially obscured.
This dataset is ideal for a wide range of real-world and research-focused applications, including:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset for this project is characterised by photos of individual human emotion expression and these photos are taken with the help of both digital camera and a mobile phone camera from different angles, posture, background, light exposure, and distances. This task might look and sound very easy but there were some challenges encountered along the process which are reviewed below: 1) People constraint One of the major challenges faced during this project is getting people to participate in the image capturing process as school was on vacation, and other individuals gotten around the environment were not willing to let their images be captured for personal and security reasons even after explaining the notion behind the project which is mainly for academic research purposes. Due to this challenge, we resorted to capturing the images of the researcher and just a few other willing individuals. 2) Time constraint As with all deep learning projects, the more data available the more accuracy and less error the result will produce. At the initial stage of the project, it was agreed to have 10 emotional expression photos each of at least 50 persons and we can increase the number of photos for more accurate results but due to the constraint in time of this project an agreement was later made to just capture the researcher and a few other people that are willing and available. These photos were taken for just two types of human emotion expression that is, āhappyā and āsadā faces due to time constraint too. To expand our work further on this project (as future works and recommendations), photos of other facial expression such as anger, contempt, disgust, fright, and surprise can be included if time permits. 3) The approved facial emotions capture. It was agreed to capture as many angles and posture of just two facial emotions for this project with at least 10 images emotional expression per individual, but due to time and people constraints few persons were captured with as many postures as possible for this project which is stated below: Ć Happy faces: 65 images Ć Sad faces: 62 images There are many other types of facial emotions and again to expand our project in the future, we can include all the other types of the facial emotions if time permits, and people are readily available. 4) Expand Further. This project can be improved furthermore with so many abilities, again due to the limitation of time given to this project, these improvements can be implemented later as future works. In simple words, this project is to detect/predict real-time human emotion which involves creating a model that can detect the percentage confidence of any happy or sad facial image. The higher the percentage confidence the more accurate the facial fed into the model. 5) Other Questions Can the model be reproducible? the supposed response to this question should be YES. If and only if the model will be fed with the proper data (images) such as images of other types of emotional expression.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
About Dataset This dataset contains real and fake images of human faces. Real and Fake Face Detection Fake Face Photos by Photoshop Experts Introduction When using social networks, have you ever encountered a 'fake identity'? Anyone can create a fake profile image using image editing tools, or even using deep learning based generators. If you are interested in making the world wide web a better place by recognizing such fake faces, you should check this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The BioID Face Database has been recorded and is published to give all researchers working in the area of face detection the possibility to compare the quality of their face detection algorithms with others. During the recording special emphasis has been laid on real world conditions. Therefore the testset features a large variety of illumination, background and face size. The dataset consists of 1521 gray level images with a resolution of 384x286 pixel. Each one shows the frontal view of a face of one out of 23 different test persons. For comparison reasons the set also contains manually set eye postions. The images are labeled BioID_xxxx.pgm where the characters xxxx are replaced by the index of the current image (with leading zeros). Similar to this, the files BioID_xxxx.eye contain the eye positions for the corresponding images.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Hispanic Human Face with Occlusion Dataset, carefully curated to support the development of robust facial recognition systems, occlusion detection models, biometric identification technologies, and KYC verification tools. This dataset provides real-world variability by including facial images with common occlusions, helping AI models perform reliably under challenging conditions.
The dataset comprises over 3,000 high-quality facial images, organized into participant-wise sets. Each set includes:
To ensure robustness and real-world utility, images were captured under diverse conditions:
Each image is paired with detailed metadata to enable advanced filtering, model tuning, and analysis:
This rich metadata helps train models that can recognize faces even when partially obscured.
This dataset is ideal for a wide range of real-world and research-focused applications, including:
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset of friends series character sets for face detection and recognition consists of two parts: training and testing. The training section has fifty photos of each of the six characters, and the test section has fifty photos featuring two or more of the characters in each photo from the Friends series for facial detection and recognition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is used in the second experimental evaluation of face smile detection in the paper titled "Smile detection using Hybrid Face Representaion" - O.A.Arigbabu et al. 2015.
Download the main images from LFWcrop website: http://conradsanderson.id.au/lfwcrop/ to select the samples we used for smile and non-smile, as in the list.
Kindly cite:
Arigbabu, Olasimbo Ayodeji, et al. "Smile detection using hybrid face representation." Journal of Ambient Intelligence and Humanized Computing (2016): 1-12.
C. Sanderson, B.C. Lovell. Multi-Region Probabilistic Histograms for Robust and Scalable Identity Inference. ICB 2009, LNCS 5558, pp. 199-208, 2009
Huang GB, Mattar M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. University of Massachusetts, Amherst, Technical Report
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Caucasian Human Facial Images Dataset, curated to advance facial recognition technology and support the development of secure biometric identity systems, KYC verification processes, and AI-driven computer vision applications. This dataset is designed to serve as a robust foundation for real-world face matching and recognition use cases.
The dataset contains over 1,000 facial image sets of Caucasian individuals. Each set includes:
All images were captured with real-world variability to enhance dataset robustness:
Each participantās data is accompanied by rich metadata to support AI model training, including:
This metadata enables targeted filtering and training across diverse scenarios.
This dataset is ideal for a wide range of AI and biometric applications:
To meet evolving AI demands, this dataset is regularly updated and can be customized. Available options include:
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Face Recognition, Face Detection, Female Photo Dataset š©
If you are interested in biometric data - visit our website to learn more and buy the dataset :)
90,000+ photos of 46,000+ women from 141 countries. The dataset includes photos of people's faces. All people presented in the dataset are women. The dataset contains a variety of images capturing individuals from diverse backgrounds and age groups. Our dataset will diversify your data by adding more photos of women of⦠See the full description on the dataset page: https://huggingface.co/datasets/TrainingDataPro/female-selfie-image-dataset.
http://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html
Welcome to Labeled Faces in the Wild, a database of face photographs designed for studying the problem of unconstrained face recognition. The data set contains more than 13,000 images of faces collected from the web. Each face has been labeled with the name of the person pictured. 1680 of the people pictured have two or more distinct photos in the data set. The only constraint on these faces is that they were detected by the Viola-Jones face detector.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1746215%2F92752ca2b0bbecdd3fd154b88495558d%2F1_RaupR7k7NrrTJZvop7sH-A.png?generation=1573849119616339&alt=media" alt="LFW-PEOPLE">
This dataset is a collection of JPEG pictures of famous people collected on the internet. All details are available on the official website: http://vis-www.cs.umass.edu/lfw/
Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0.
The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery).
The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 47 pixels.
We wouldn't be here without the help of others. I would like to thank Computer Vision Laboratory, university of Massachusetts for providing us with such an excellent database.
I had an activity in my college for facial recognition. I came up with this as the best kind of dataset for my task. I am posting it here on Kaggle to make it available for other data scientists conveniently and see what magic they can perform with this amazing dataset.
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
The "Labeled Faces in the Wild-a" image collection is a database of labeled, face images intended for studying Face Recognition in unconstrained images. It contains the same images available in the original Labeled Faces in the Wild data set, however, here we provide them after alignment using a commercial face alignment software. Some of our results, published in [1,2,3], were produced using these images. We show this alignment to improve the performance of face recognition algorithms. More information on how these images were aligned may be found in the two papers. We have maintained the same directory structure as in the original LFW data set, and so these images can be used as direct substitutes for those in the original image set. Note, however, that the images available here are grayscale versions of the originals. Citation: If you find these images useful and use them in your work, please follow these guidlines: Comply with any instructions specified for the original L
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Infrared Face Detection Dataset
Dataset contains 125,500+ images, including infrared images, from 4,484 individuals with or without a mask of various races, genders, and ages. It is specifically designed for research in face recognition and facial recognition technology, focusing on the unique challenges posed by thermal infrared imaging. By utilizing this dataset, researchers and developers can enhance their understanding of recognition systems and improve the recognition accuracy⦠See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/infrared-face-recognition-dataset.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset comprises 16.7k images and 2 annotation files, each in a distinct format. The first file, labeled "Label," contains annotations with the original scale, while the second file, named "yolo_format_labels," contains annotations in YOLO format. The dataset was obtained by employing the OIDv4 toolkit, specifically designed for scraping data from Google Open Images. Notably, this dataset exclusively focuses on face detection.
This dataset offers a highly suitable resource for training deep learning models specifically designed for face detection tasks. The images within the dataset exhibit exceptional quality and have been meticulously annotated with bounding boxes encompassing the facial regions. The annotations are provided in two formats: the original scale, denoting the pixel coordinates of the bounding boxes, and the YOLO format, representing the bounding box coordinates in normalized form.
The dataset was meticulously curated by scraping relevant images from Google Open Images through the use of the OIDv4 toolkit. Only images that are pertinent to face detection tasks have been included in this dataset. Consequently, it serves as an ideal choice for training deep learning models that specifically target face detection tasks.