Facebook
TwitterThis dataset contain almost all region in Indonesia (there are several new provinces that was not included in this dataset, which are Papua Selatan, Papua Tengah, and Papua Pengunungan).
This dataset contains 4 files, which are - provinsi.csv (Province) - kabupaten.csv (City), - kecamatan.csv (District), - kelurahan.csv (Sub-District).
Each file contains 2 or more column, (2 only for provinsi.csv) which include its region id, region name, and corresponding bigger region id. All the city is Indonesia, is included in kabupaten.csv
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Producer Prices in Indonesia increased to 105.46 points in October from 105.27 points in September of 2025. This dataset provides - Indonesia Producer Prices - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Indonesia Consolidated Fiscal Balance: % of GDP
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
Indonesia Data Center Networking Market Report Segments the Industry Into Components (By Product, by Services), End-Users (IT & Telecommunication, BFSI, Other End-Users). Data-Center Type(Colocation, Hyperscalers/Cloud Service Providers, and More). And Bandwidth( ≤10 GbE, 25–40 GbE, and More). The Market Forecasts are Provided in Terms of Value (USD).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia: Dependent people as percent of the working age population: The latest value from 2024 is 46.81 percent, a decline from 47.02 percent in 2023. In comparison, the world average is 58.13 percent, based on data from 196 countries. Historically, the average for Indonesia from 1960 to 2024 is 65.12 percent. The minimum value, 46.81 percent, was reached in 2024 while the maximum of 84.42 percent was recorded in 1971.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Primary data audio signal of Indonesian speech accent was taken by direct recording. The recording process was carried out by speakers aged 17 - 50 years from the Batak, Malay, Javanese, Sundanese, and Papuan ethnic groups. Each speaker uttered the same 320-word Indonesian text, recorded on their respective mobile phones.
Some additional secondary data was taken from several internet sources like YouTube, podcasts, etc. (the MFCC files are derived only from primary data).
Here is the exact sentence script used for the primary data recordings:
""" Sebagai negara dengan populasi terbesar keempat di dunia, Indonesia memiliki lebih dari seribu tiga ratus empat puluh suku yang tersebar di seluruh wilayahnya. Ada tiga puluh suku yang memiliki populasi lebih dari satu juta. Simmons Fenning menyatakan bahwa Indonesia memiliki tujuh ratus sembilan belas bahasa dan tujuh ratus tujuh bahasa diantaranya masih aktif dituturkan. Keberagaman suku dan bahasa di Indonesia menghasilkan aksen yang khas dari masing-masing penutur Bahasa Indonesia.
Dalam setiap pengucapan Bahasa Indonesia, seringkali ditemukan aksen atau logat yang menjadi ciri khas pada setiap penutur. Ciri khas pada pengucapan ini berasal dari penonjolan pada suku kata tertentu yang dapat dilakukan dengan memperpanjang pengucapan, meninggikan nada, atau memperbesar intensitas pada suku kata tertentu. Hal inilah yang menyebabkan penutur Bahasa Indonesia dari suku-suku tertentu memiliki aksen atau logat yang khas.
Ekstraksi fitur adalah proses mencari nilai yang paling penting dan berdampak pada sinyal audio. Sampai saat ini, terdapat sebelas fitur yang paling sering digunakan untuk proses ekstraksi sinyal audio dimana tiga fitur diekstraksi dalam domain waktu, dan delapan fitur diekstraksi dalam domain frekuensi. Contoh lain diantaranya adalah fitur kejelasan, kekeruhan, dan fitur-forman. Dalam perkembangannya, klasifikasi berdasarkan lebih dari satu fitur atau disebut juga multi-fitur pada sinyal audio semakin sering digunakan. Oleh karena itu, perlu dilakukan penelitian untuk menentukan fitur-fitur mana yang paling berpengaruh dalam proses klasifikasi aksen pada audio Bahasa Indonesia.
Penelitian ini akan berusaha mengetahui fitur-fitur apa saja yang paling berpengaruh pada klasifikasi aksen pada sinyal audio Bahasa Indonesia dan seberapa besar tingkat akurasi klasifikasi aksen pada sinyal audio Bahasa Indonesia dengan menggunakan masing-masing fitur tersebut. Jumlah suku yang akan digunakan sebagai sampel dan diklasifikasi adalah sebanyak dua puluh suku yang memiliki populasi terbesar di Indonesia. Hasil dari penelitian ini dapat menjadi referensi bagi penelitian-penelitian lain dalam melakukan analisis atau klasifikasi yang terkait dengan aksen atau dialek Bahasa Indonesia. """
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
Indonesia Data Center Power Market Report Segments the Industry Into Component (Electrical Solutions, Service), Data Center Type (Hyperscaler/Cloud Service Providers and More), Data Center Size(Small-Sized Data Centers, Medium-Sized Data Centers, and More), and Tier Level (Tier I and II and More). The Market Forecasts are Provided in Terms of Value (USD).
Facebook
Twitterhttps://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/
Monthly and long-term Indonesia Public Debt data: historical series and analyst forecasts curated by FocusEconomics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia: Regulatory quality index (-2.5 weak; 2.5 strong): The latest value from 2023 is 0.3 points, an increase from 0.21 points in 2022. In comparison, the world average is -0.03 points, based on data from 193 countries. Historically, the average for Indonesia from 1996 to 2023 is -0.21 points. The minimum value, -0.87 points, was reached in 2003 while the maximum of 0.3 points was recorded in 2023.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indeks Daya Saing Global Indonesia dilaporkan sebesar 64.629 Score pada 2019. Rekor ini turun dibanding sebelumnya yaitu 64.935 Score untuk 2018. Data Indeks Daya Saing Global Indonesia diperbarui tahunan, dengan rata-rata 64.629 Score dari 2017 sampai 2019, dengan 3 observasi. Data ini mencapai angka tertinggi sebesar 64.935 Score pada 2018 dan rekor terendah sebesar 63.488 Score pada 2017. Data Indeks Daya Saing Global Indonesia tetap berstatus aktif di CEIC dan dilaporkan oleh World Economic Forum. Data dikategorikan dalam Global Competitiveness Index (GCI) World Trend Plus – Table GCI 4.0: Overall Index: Individual Countries.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia: Male labor force participation rate: The latest value from 2024 is 81.42 percent, a decline from 81.46 percent in 2023. In comparison, the world average is 69.88 percent, based on data from 176 countries. Historically, the average for Indonesia from 1990 to 2024 is 82.72 percent. The minimum value, 79.74 percent, was reached in 2021 while the maximum of 84.57 percent was recorded in 2001.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Capacity Utilization in Indonesia increased to 73.84 percent in the third quarter of 2025 from 73.58 percent in the second quarter of 2025. This dataset provides - Indonesia Capacity Utilization - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Number of Households: Indonesia data was reported at 67,173.400 Unit th in 2017. This records an increase from the previous number of 66,385.400 Unit th for 2016. Number of Households: Indonesia data is updated yearly, averaging 55,041.000 Unit th from Dec 1989 (Median) to 2017, with 27 observations. The data reached an all-time high of 67,173.400 Unit th in 2017 and a record low of 38,914.660 Unit th in 1989. Number of Households: Indonesia data remains active status in CEIC and is reported by Central Bureau of Statistics. The data is categorized under Global Database’s Indonesia – Table ID.HB001: Number of Household.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Indonesia Foreign Direct Investment
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Indonesia Electricity Production
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Uang M2 Indonesia dilaporkan sebesar 567.859 USD bn pada 2025-01. Rekor ini turun dibanding sebelumnya yaitu 572.122 USD bn untuk 2024-12. Data Uang M2 Indonesia diperbarui bulanan, dengan rata-rata 75.882 USD bn dari 1968-02 sampai 2025-01, dengan 684 observasi. Data ini mencapai angka tertinggi sebesar 597.701 USD bn pada 2024-09 dan rekor terendah sebesar 242.105 USD mn pada 1968-02. Data Uang M2 Indonesia tetap berstatus aktif di CEIC dan dilaporkan oleh CEIC Data. Data dikategorikan dalam Global Economic Monitor World Trend Plus – Table: Money Supply M2: USD: Monthly.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Indonesia Business Confidence Growth
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The latest data from show economic growth of 5.04 percent,
which is a decrease from the rate of growth of 5.1 percent in the previous quarter and
an increase compared to the growth rate of 4.95 percent in the same quarter last year.
The economic growth time series for Indonesia cover the period...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Indonesian textile craftsmanship has evolved over millennia, transitioning from basic utilitarian weaving techniques around 2500 BC to more intricate patterns and religious symbolism and social and culture during the time, with production hubs across regions like Sumatra, Borneo, Java, Celebes, Nusa Tenggara, and Bali. These textiles evolved from utilitarian items to carriers of sacred meanings, divided into secular and sacred cloths, both renowned for their aesthetic beauty. They played a pivotal role in individuals' cultural journeys, symbolizing life stages like maternity, matrimony, and mortality, with designs reflecting religious beliefs and the era's influence. The Batik technique, a hallmark of Indonesian textile artistry, involves creating intricate patterns using a resist wax method. Traditionally, artisans used a tool called a canting to draw patterns on fabric, a process known as batik tulis (drawn batik). Following the drawing phase, the cloth was dyed using natural dyes, and then subjected to the "lorot" process, involving boiling the wax out of the fabric.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F19051508%2Fe543b4e91ad5dffe2b54e7f4300cc7b2%2F2024-02-16%2015.09.06%20copy%202.jpg?generation=1708074019154098&alt=media" alt="">
Batik making is revered for its complexity and demands high craftsmanship, requiring precise hand gestures and mastery of the canting tool. It stands as one of the most challenging pattern-making techniques in textile artistry. [1]
The primary objective of this dataset is to serve as a resource for research or academic or educational purposes rather than commercial endeavors. The dataset was meticulously compiled to include high-quality images representative of various types of Batik, encompassing the rich diversity of Batik Nusantara or Indonesian Batik from the Aceh to Papua regions.
Andrew has mentioned that the cornerstone of effective machine learning lies in the quality of the data. Meticulously curated datasets hold the power to unlock valuable insights and drive meaningful results. In other words, data is more important than models. In contrast, datasets lacking in quality may hinder the learning process and lead to suboptimal outcomes. Therefore, prioritizing data quality is paramount, as it lays the foundation for successful machine learning initiatives [2]. Also Sebastian added that the effectiveness of a machine learning algorithm greatly depends on the quality of the data and the richness of the information it encapsulates [3].
This dataset was meticulously carefully collected with the assistance of Ultralytics. The ownership of all images within this dataset belongs to respective parties, to whom we extend our gratitude for their contribution of these visually captivating images.
[Dataset creator's name]. ([Year & Month of dataset creation]). [Name of the dataset], [Version of the dataset]. Retrieved [Date Retrieved] from [URL of the dataset].
Comprising 40 raw images per class with image dimension of 224 x 224, this dataset encompasses a wide array of Batik designs, each representing a distinct category. The classes include 'Aceh PintuAceh', 'Bali Barong', 'Bali Merak', 'DKI OndelOndel', 'JawaBarat Megamendung', 'JawaTimur Pring', 'Kalimantan Dayak', 'Lampung Gajah', 'Madura Mataketeran', 'Maluku Pala', 'NTB Lumbung', 'Papua Asmat', 'Papua Cendrawasih', 'Papua Tifa', 'Solo Parang', 'SulawesiSelatan Lontara', 'SumateraBarat Rumah Minang', 'SumateraUtara Boraspati', 'Yogyakarta Kawung', and 'Yogyakarta Parang' [2][3][4][5][6][7]. These classes collectively portray the rich heritage of Batik Nusantara or Batik Indonesia, spanning from the Aceh to Papua regions.
Feel free to explore image augmentation techniques to further enhance the dataset.
Simple Coding is available @ git with assumption using Colab. For reference, the following pre-trained architectures have been added: VGG16, ResNet50, Xception, MobileNetV2, along with Content-Based Image Retrieval (CBIR), Random Forest, a CNN architecture, and modeling, in addition to the MLP. It is also available on Kaggle Dataset Notebooks (Code).
Below are steps to utilise the dataset using either Google Colab or Jupyter Notebook:
1. Begin by downloading the dataset.
2. Upon extraction, you'll find separate folders for training and testing data. Should you require validation data, either manually split a portion (approximately around 20%) from the training set and store it separately, or perform on-the-fly splitting during coding.
3. If splitting validation data manually, remember to re-zip the dataset after the separation process.
4....
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia Overview Statistics: Number of Company: Total data was reported at 199.000 Unit in Jan 2025. This records a decrease from the previous number of 200.000 Unit for Dec 2024. Indonesia Overview Statistics: Number of Company: Total data is updated monthly, averaging 244.000 Unit from Jan 2016 (Median) to Jan 2025, with 109 observations. The data reached an all-time high of 266.000 Unit in Jan 2016 and a record low of 64.000 Unit in Oct 2016. Indonesia Overview Statistics: Number of Company: Total data remains active status in CEIC and is reported by Indonesia Financial Services Authority. The data is categorized under Indonesia Premium Database’s Banking Sector – Table ID.KBB001: Multifinance Company: Overview: Number of Company.
Facebook
TwitterThis dataset contain almost all region in Indonesia (there are several new provinces that was not included in this dataset, which are Papua Selatan, Papua Tengah, and Papua Pengunungan).
This dataset contains 4 files, which are - provinsi.csv (Province) - kabupaten.csv (City), - kecamatan.csv (District), - kelurahan.csv (Sub-District).
Each file contains 2 or more column, (2 only for provinsi.csv) which include its region id, region name, and corresponding bigger region id. All the city is Indonesia, is included in kabupaten.csv