2 datasets found
  1. Coronavirus(COVID-19) Dataset

    • kaggle.com
    zip
    Updated Mar 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jubayer Hossain (2020). Coronavirus(COVID-19) Dataset [Dataset]. https://www.kaggle.com/datasets/jhossain/covid19-dataset/discussion
    Explore at:
    zip(156684 bytes)Available download formats
    Dataset updated
    Mar 24, 2020
    Authors
    Jubayer Hossain
    Description

    Context

    According to WHO Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illnesses.

    Johns Hopkins University has made an excellent dashboard for tracking the spread of COVID-19. Data is extracted from the Johns Hopkins Github repository associated and made available here.

    Content

    This dataset has daily level information on the number of confirmed cases, deaths and recovery cases from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number. The data is available from 22 Jan, 2020 and updated regularly. Github repository of this clean dataset is here

    Columns Description

    Filename is covid-19_cleaned_data.csv(updated) - Province/State- Province/State of the observations - Country/Region-Country of observations - Date- Last update - Confirmed - Cumulative number of confirmed cases till that date - Recovered - Cumulative number of recovered till that date - Deaths- Cumulative number of deaths till that date - Lat and Long - Coordinates

    Acknowledgements

    Inspiration

    Some insights could be 1. Mortality rate over time 2. Exponential growth 3. Changes in the number of affected cases over time 4. The latest number of affected cases

  2. COVID-19 Dataset

    • kaggle.com
    zip
    Updated Nov 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meir Nizri (2022). COVID-19 Dataset [Dataset]. https://www.kaggle.com/datasets/meirnizri/covid19-dataset
    Explore at:
    zip(4890659 bytes)Available download formats
    Dataset updated
    Nov 13, 2022
    Authors
    Meir Nizri
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.

    The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.

    content

    The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.

    • sex: 1 for female and 2 for male.
    • age: of the patient.
    • classification: covid test findings. Values 1-3 mean that the patient was diagnosed with covid in different degrees. 4 or higher means that the patient is not a carrier of covid or that the test is inconclusive.
    • patient type: type of care the patient received in the unit. 1 for returned home and 2 for hospitalization.
    • pneumonia: whether the patient already have air sacs inflammation or not.
    • pregnancy: whether the patient is pregnant or not.
    • diabetes: whether the patient has diabetes or not.
    • copd: Indicates whether the patient has Chronic obstructive pulmonary disease or not.
    • asthma: whether the patient has asthma or not.
    • inmsupr: whether the patient is immunosuppressed or not.
    • hypertension: whether the patient has hypertension or not.
    • cardiovascular: whether the patient has heart or blood vessels related disease.
    • renal chronic: whether the patient has chronic renal disease or not.
    • other disease: whether the patient has other disease or not.
    • obesity: whether the patient is obese or not.
    • tobacco: whether the patient is a tobacco user.
    • usmr: Indicates whether the patient treated medical units of the first, second or third level.
    • medical unit: type of institution of the National Health System that provided the care.
    • intubed: whether the patient was connected to the ventilator.
    • icu: Indicates whether the patient had been admitted to an Intensive Care Unit.
    • date died: If the patient died indicate the date of death, and 9999-99-99 otherwise.
  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jubayer Hossain (2020). Coronavirus(COVID-19) Dataset [Dataset]. https://www.kaggle.com/datasets/jhossain/covid19-dataset/discussion
Organization logo

Coronavirus(COVID-19) Dataset

COVID-19 Global Affected Cases

Explore at:
zip(156684 bytes)Available download formats
Dataset updated
Mar 24, 2020
Authors
Jubayer Hossain
Description

Context

According to WHO Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illnesses.

Johns Hopkins University has made an excellent dashboard for tracking the spread of COVID-19. Data is extracted from the Johns Hopkins Github repository associated and made available here.

Content

This dataset has daily level information on the number of confirmed cases, deaths and recovery cases from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number. The data is available from 22 Jan, 2020 and updated regularly. Github repository of this clean dataset is here

Columns Description

Filename is covid-19_cleaned_data.csv(updated) - Province/State- Province/State of the observations - Country/Region-Country of observations - Date- Last update - Confirmed - Cumulative number of confirmed cases till that date - Recovered - Cumulative number of recovered till that date - Deaths- Cumulative number of deaths till that date - Lat and Long - Coordinates

Acknowledgements

Inspiration

Some insights could be 1. Mortality rate over time 2. Exponential growth 3. Changes in the number of affected cases over time 4. The latest number of affected cases

Search
Clear search
Close search
Google apps
Main menu