Facebook
TwitterAccording to WHO Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illnesses.
Johns Hopkins University has made an excellent dashboard for tracking the spread of COVID-19. Data is extracted from the Johns Hopkins Github repository associated and made available here.
This dataset has daily level information on the number of confirmed cases, deaths and recovery cases from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number. The data is available from 22 Jan, 2020 and updated regularly. Github repository of this clean dataset is here
Filename is covid-19_cleaned_data.csv(updated) - Province/State- Province/State of the observations - Country/Region-Country of observations - Date- Last update - Confirmed - Cumulative number of confirmed cases till that date - Recovered - Cumulative number of recovered till that date - Deaths- Cumulative number of deaths till that date - Lat and Long - Coordinates
Some insights could be 1. Mortality rate over time 2. Exponential growth 3. Changes in the number of affected cases over time 4. The latest number of affected cases
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.
The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.
The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAccording to WHO Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with the COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illnesses.
Johns Hopkins University has made an excellent dashboard for tracking the spread of COVID-19. Data is extracted from the Johns Hopkins Github repository associated and made available here.
This dataset has daily level information on the number of confirmed cases, deaths and recovery cases from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number. The data is available from 22 Jan, 2020 and updated regularly. Github repository of this clean dataset is here
Filename is covid-19_cleaned_data.csv(updated) - Province/State- Province/State of the observations - Country/Region-Country of observations - Date- Last update - Confirmed - Cumulative number of confirmed cases till that date - Recovered - Cumulative number of recovered till that date - Deaths- Cumulative number of deaths till that date - Lat and Long - Coordinates
Some insights could be 1. Mortality rate over time 2. Exponential growth 3. Changes in the number of affected cases over time 4. The latest number of affected cases