This data comes from the 2010 Census Profile of General Population and Housing Characteristics. Zip codes are limited to those that fall at least partially within LA city boundaries. The dataset will be updated after the next census in 2020. To view all possible columns and access the data directly, visit http://factfinder.census.gov/faces/affhelp/jsf/pages/metadata.xhtml?lang=en&type=table&id=table.en.DEC_10_SF1_SF1DP1#main_content.
Population by U.S. Postal ZIP Code from the 2020 Decennial Census
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset was created by Shaswot Joshi
Released under Database: Open Database, Contents: Database Contents
This dataset denotes ZIP Code centroid locations weighted by population. Population weighted centroids are a common tool for spatial analysis, particularly when more granular data is unavailable or researchers lack sophisticated geocoding tools. The ZIP Code Population Weighted Centroids allows researchers and analysts to estimate the center of population in a given geography rather than the geometric center.
https://www.geopostcodes.com/privacy-policy/https://www.geopostcodes.com/privacy-policy/
Comprehensive, annually-updated population datasets at ZIP code and administrative levels for 247 countries, spanning from 1975 to 2030, including historical, current, and projected population figures, enriched with attributes like area size, multilingual support, UNLOCODEs, IATA codes, and time zones.
https://www.illinois-demographics.com/terms_and_conditionshttps://www.illinois-demographics.com/terms_and_conditions
A dataset listing Illinois zip codes by population for 2024.
Our zip code Database offers comprehensive postal code data for spatial analysis, including postal and administrative areas. This dataset contains accurate and up-to-date information on all administrative divisions, cities, and zip codes, making it an invaluable resource for various applications such as address capture and validation, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including CSV, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Product features include fully and accurately geocoded data, multi-language support with address names in local and foreign languages, comprehensive city definitions, and the option to combine map data with UNLOCODE and IATA codes, time zones, and daylight saving times. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English. The disadvantage variable was incorrectly calculated for the following datasets: DS7 Socioeconomic Status and Demographic Characteristics of Census Tracts (2020 Census), United States, 2018-2022 Data DS8 Socioeconomic Status and Demographic Characteristics of ZIP Code Tabulation Areas (2020 Census), United States, 2018-2022 Data Please refrain from downloading these datasets. The updated datasets are forthcoming and will be made available soon. Users needing these datasets can reach out to nanda-admin@umich.edu.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number ā this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia zip codes by population for 2024.
This data collection relates ZIP codes to counties, to standard metropolitan statistical areas (SMSAs), and, in New England, to minor civil divisions (MCDs). The relationships between ZIP codes and other geographical units are based on 1979 boundaries, and changes since that time are not reflected. The Census Bureau used various sources to determine ZIP code-county or ZIP code-MCD relationships. In the cases where the sources were confusing or contradictory as to the geographical boundaries of a ZIP code, multiple ZIP-code records (each representing the territory contained in that ZIP-code area) were included in the data file. As a result, the file tends to overstate the ZIP code-county or ZIP code-MCD crossovers. The file is organized by ZIP code and is a byproduct of data used to administer the 1980 Census. Variables include ZIP codes, post office names, FIPS state and county codes, county or MCD names, and SMSA codes. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08051.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
https://www.southcarolina-demographics.com/terms_and_conditionshttps://www.southcarolina-demographics.com/terms_and_conditions
A dataset listing South Carolina zip codes by population for 2024.
https://www.mississippi-demographics.com/terms_and_conditionshttps://www.mississippi-demographics.com/terms_and_conditions
A dataset listing Mississippi zip codes by population for 2024.
This dataset provides a Demographic breakdown of only DYCD-funded participants within a Zip Code of NYC. The data displays the counts, and percentages of the participants in each of the following categories: ā Gender (Male, Female, Unknown) ā Ethnicity (Hispanic/Latino, non-Hispanic/non-Latino) ā Race (Pacific Islander, American Indian, Asian, White, Black, Other, Unknown) This data is used to measure the numbers of the different population groups that are served by DYCD for a Borough, and Community.
https://www.aterio.io/terms-of-servicehttps://www.aterio.io/terms-of-service
Explore Demographic Insights and Forecasts for Every Zip Code: Historical, Current, and Future Trends.
The Demographic Reports are produced by the Economic, Demographic and Statistical Research unit within the Countywide Service Integration and Planning Management (CSIPM) Division of the Fairfax County Department of Neighborhood and Community Services. Information produced by the Economic, Demographic and Statistical Research unit is used by every county department, board, authority and the Fairfax County Public Schools.
This data package has the purpose to offer data for demographic indicators, part of 5-years American Community Census, that could be needed in the analysis made along with health-related data or alone. The American Community Survey based on 5-years estimates is, according to U.S Census Bureau, the most reliable, because the samples used are the largest and the data collected cover all country areas, regardless of the population number.
https://www.westvirginia-demographics.com/terms_and_conditionshttps://www.westvirginia-demographics.com/terms_and_conditions
A dataset listing West Virginia zip codes by population for 2024.
Population by U.S. Postal ZIP Code from the Series 14 Regional Growth Forecast
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
US population by zip code
Social Sciences
1586081
Free
This data comes from the 2010 Census Profile of General Population and Housing Characteristics. Zip codes are limited to those that fall at least partially within LA city boundaries. The dataset will be updated after the next census in 2020. To view all possible columns and access the data directly, visit http://factfinder.census.gov/faces/affhelp/jsf/pages/metadata.xhtml?lang=en&type=table&id=table.en.DEC_10_SF1_SF1DP1#main_content.