3 datasets found
  1. f

    DataSheet_1_CD274 (PD-L1) negatively regulates M1 macrophage polarization in...

    • frontiersin.figshare.com
    docx
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nana Tang; Yang Yang; Yifei Xie; Guohui Yang; Qin Wang; Chang Li; Zeyi Liu; Jian-an Huang (2024). DataSheet_1_CD274 (PD-L1) negatively regulates M1 macrophage polarization in ALI/ARDS.docx [Dataset]. http://doi.org/10.3389/fimmu.2024.1344805.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset provided by
    Frontiers
    Authors
    Nana Tang; Yang Yang; Yifei Xie; Guohui Yang; Qin Wang; Chang Li; Zeyi Liu; Jian-an Huang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundAcute lung injury (ALI)/severe acute respiratory distress syndrome (ARDS) is a serious clinical syndrome characterized by a high mortality rate. The pathophysiological mechanisms underlying ALI/ARDS remain incompletely understood. Considering the crucial role of immune infiltration and macrophage polarization in the pathogenesis of ALI/ARDS, this study aims to identify key genes associated with both ALI/ARDS and M1 macrophage polarization, employing a combination of bioinformatics and experimental approaches. The findings could potentially reveal novel biomarkers for the diagnosis and management of ALI/ARDS.MethodsGene expression profiles relevant to ALI were retrieved from the GEO database to identify co-upregulated differentially expressed genes (DEGs). GO and KEGG analyses facilitated functional annotation and pathway elucidation. PPI networks were constructed to identify hub genes, and differences in immune cell infiltration were subsequently examined. The expression of hub genes in M1 versus M2 macrophages was evaluated using macrophage polarization datasets. The diagnostic utility of CD274 (PD-L1) for ARDS was assessed by receiver operating characteristic (ROC) analysis in a validation dataset. Experimental confirmation was conducted using two LPS-induced M1 macrophage models and an ALI mouse model. The role of CD274 (PD-L1) in M1 macrophage polarization and associated proinflammatory cytokine production was further investigated by siRNA-mediated silencing.ResultsA total of 99 co-upregulated DEGs were identified in two ALI-linked datasets. Enrichment analysis revealed that these DEGs were mainly involved in immune-inflammatory pathways. The following top 10 hub genes were identified from the PPI network: IL-6, IL-1β, CXCL10, CD274, CCL2, TLR2, CXCL1, CCL3, IFIT1, and IFIT3. Immune infiltration analysis revealed a significantly increased abundance of M1 and M2 macrophages in lung tissue from the ALI group compared to the control group. Subsequent analysis confirmed that CD274 (PD-L1), a key immunological checkpoint molecule, was highly expressed within M1 macrophages. ROC analysis validated CD274 (PD-L1) as a promising biomarker for the diagnosis of ARDS. Both in vitro and in vivo experiments supported the bioinformatics analysis and confirmed that the JAK-STAT3 pathway promotes CD274 (PD-L1) expression on M1 macrophages. Importantly, knockdown of CD274 (PD-L1) expression potentiated M1 macrophage polarization and enhanced proinflammatory cytokines production.ConclusionThis study demonstrates a significant correlation between CD274 (PD-L1) and M1 macrophages in ALI/ARDS. CD274 (PD-L1) functions as a negative regulator of M1 polarization and the secretion of proinflammatory cytokines in macrophages. These findings suggest potential new targets for the diagnosis and treatment of ALI/ARDS.

  2. f

    Table1_Qingfei Litan Decoction Against Acute Lung Injury/Acute Respiratory...

    • figshare.com
    xlsx
    Updated Jun 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yirui Diao; Qi Ding; Gonghao Xu; Yadong Li; Zhenqiu Li; Hanping Zhu; Wenxiang Zhu; Peng Wang; Yuanyuan Shi (2023). Table1_Qingfei Litan Decoction Against Acute Lung Injury/Acute Respiratory Distress Syndrome: The Potential Roles of Anti-Inflammatory and Anti-Oxidative Effects.xlsx [Dataset]. http://doi.org/10.3389/fphar.2022.857502.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    Frontiers
    Authors
    Yirui Diao; Qi Ding; Gonghao Xu; Yadong Li; Zhenqiu Li; Hanping Zhu; Wenxiang Zhu; Peng Wang; Yuanyuan Shi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is an acute respiratory failure syndrome characterized by progressive arterial hypoxemia and dyspnea. Qingfei Litan (QFLT) decoction, as a classic prescription for the treatment of acute respiratory infections, is effective for the treatment of ALI/ARDS. In this study, the compounds, hub targets, and major pathways of QFLT in ALI/ARDS treatment were analyzed using Ultra high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) and systemic pharmacology strategies. UHPLC-MS identified 47 main components of QFLT. To explore its anti-inflammatory and anti-oxidative mechanisms, gene ontology (Go) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and network pharmacological analysis were conducted based on the main 47 components. KEGG enrichment analysis showed that TNF signaling pathway and Toll-like receptor signaling pathway may be the key pathways of ALI/ARDS. We explored the anti-inflammatory and anti-oxidative pharmacological effects of QFLT in treatment of ALI/ARDS in vivo and in vitro. QFLT suppressed the levels of proinflammatory cytokines and alleviated oxidative stress in LPS-challenged mice. In vitro, QFLT decreased the levels of TNF-α, IL-6, IL-1β secreted by LPS-activated macrophages, increased GSH level and decreased the LPS-activated reactive oxygen species (ROS) in lung epithelial A549 cells. This study suggested that QFLT may have anti-inflammatory and anti-oxidative effects on ALI/ARDS, combining in vivo and in vitro experiments with systemic pharmacology, providing a potential therapeutic strategy option.

  3. Primers for RT-qPCR.

    • plos.figshare.com
    xls
    Updated Jun 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaqing Zhou; Haiyan Wang; Aiming Liu; Zunguo Pu; Qiuxia Ji; Jianhua Xu; Yuehua Xu; Ying Wang (2024). Primers for RT-qPCR. [Dataset]. http://doi.org/10.1371/journal.pone.0302721.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 27, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yaqing Zhou; Haiyan Wang; Aiming Liu; Zunguo Pu; Qiuxia Ji; Jianhua Xu; Yuehua Xu; Ying Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveTo investigate the therapeutic effect and mechanism of sivelestat sodium on acute lung injury (AIL).MethodsA rat model for ALI/acute respiratory distress syndrome (ALI/ARDS) was established. Pathological examination of lung tissue was conducted to assess lung injury. Blood gas in the arteries was measured using a blood analyzer. Changes in PaO2, PaO2/FiO2, and lung wet/dry (W/D) weight ratio were carefully compared. ELISA assay was conducted to estimate cell adhesion and inflammation response. Finally, real-time reverse transcription polymerase chain reaction and western blotting assay was used to determine the activation of PI3K/AKT/mTOR pathway.ResultsARDS in vivo model was successfully constructed by LPS injection. Compared with the sham group, PaO2 and PaO2/FiO2 were significantly lower in the vehicle group, while the lung W/D ratio, the lung injury score, NE, VCAM-1, IL-8 andTNF-αwere significantly increased. After treatment with different doses of sivelestat sodium, we found PaO2, PaO2/FiO2 were prominently increased, while the lung W/D ratio, the lung injury score, NE, VCAM-1, IL-8, TNF-α levels were decreased in the dose-dependent manner. Meanwhile, compared with the vehicle group, the expression levels of Bax, PI3K, Akt and mTOR were significantly lower, and the expression of Bcl-2 was significantly higher after injection with sivelestat sodium.ConclusionSivelestat sodium has an interventional effect on ALI in sepsis by inhibiting the PI3K/AKT/mTOR signalling pathway.

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nana Tang; Yang Yang; Yifei Xie; Guohui Yang; Qin Wang; Chang Li; Zeyi Liu; Jian-an Huang (2024). DataSheet_1_CD274 (PD-L1) negatively regulates M1 macrophage polarization in ALI/ARDS.docx [Dataset]. http://doi.org/10.3389/fimmu.2024.1344805.s001

DataSheet_1_CD274 (PD-L1) negatively regulates M1 macrophage polarization in ALI/ARDS.docx

Related Article
Explore at:
docxAvailable download formats
Dataset updated
Feb 19, 2024
Dataset provided by
Frontiers
Authors
Nana Tang; Yang Yang; Yifei Xie; Guohui Yang; Qin Wang; Chang Li; Zeyi Liu; Jian-an Huang
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

BackgroundAcute lung injury (ALI)/severe acute respiratory distress syndrome (ARDS) is a serious clinical syndrome characterized by a high mortality rate. The pathophysiological mechanisms underlying ALI/ARDS remain incompletely understood. Considering the crucial role of immune infiltration and macrophage polarization in the pathogenesis of ALI/ARDS, this study aims to identify key genes associated with both ALI/ARDS and M1 macrophage polarization, employing a combination of bioinformatics and experimental approaches. The findings could potentially reveal novel biomarkers for the diagnosis and management of ALI/ARDS.MethodsGene expression profiles relevant to ALI were retrieved from the GEO database to identify co-upregulated differentially expressed genes (DEGs). GO and KEGG analyses facilitated functional annotation and pathway elucidation. PPI networks were constructed to identify hub genes, and differences in immune cell infiltration were subsequently examined. The expression of hub genes in M1 versus M2 macrophages was evaluated using macrophage polarization datasets. The diagnostic utility of CD274 (PD-L1) for ARDS was assessed by receiver operating characteristic (ROC) analysis in a validation dataset. Experimental confirmation was conducted using two LPS-induced M1 macrophage models and an ALI mouse model. The role of CD274 (PD-L1) in M1 macrophage polarization and associated proinflammatory cytokine production was further investigated by siRNA-mediated silencing.ResultsA total of 99 co-upregulated DEGs were identified in two ALI-linked datasets. Enrichment analysis revealed that these DEGs were mainly involved in immune-inflammatory pathways. The following top 10 hub genes were identified from the PPI network: IL-6, IL-1β, CXCL10, CD274, CCL2, TLR2, CXCL1, CCL3, IFIT1, and IFIT3. Immune infiltration analysis revealed a significantly increased abundance of M1 and M2 macrophages in lung tissue from the ALI group compared to the control group. Subsequent analysis confirmed that CD274 (PD-L1), a key immunological checkpoint molecule, was highly expressed within M1 macrophages. ROC analysis validated CD274 (PD-L1) as a promising biomarker for the diagnosis of ARDS. Both in vitro and in vivo experiments supported the bioinformatics analysis and confirmed that the JAK-STAT3 pathway promotes CD274 (PD-L1) expression on M1 macrophages. Importantly, knockdown of CD274 (PD-L1) expression potentiated M1 macrophage polarization and enhanced proinflammatory cytokines production.ConclusionThis study demonstrates a significant correlation between CD274 (PD-L1) and M1 macrophages in ALI/ARDS. CD274 (PD-L1) functions as a negative regulator of M1 polarization and the secretion of proinflammatory cytokines in macrophages. These findings suggest potential new targets for the diagnosis and treatment of ALI/ARDS.

Search
Clear search
Close search
Google apps
Main menu