66 datasets found
  1. H

    Online Shopping Store - Web Server Logs

    • dataverse.harvard.edu
    Updated May 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Farzin Zaker (2021). Online Shopping Store - Web Server Logs [Dataset]. http://doi.org/10.7910/DVN/3QBYB5
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 20, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Farzin Zaker
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Nginx server access log for an online shopping store

  2. Z

    AIT Log Data Set V1.1

    • data.niaid.nih.gov
    • zenodo.org
    Updated Oct 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hotwagner, Wolfgang (2023). AIT Log Data Set V1.1 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3723082
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    Wurzenberger, Markus
    Skopik, Florian
    Rauber, Andreas
    Landauer, Max
    Hotwagner, Wolfgang
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    AIT Log Data Sets

    This repository contains synthetic log data suitable for evaluation of intrusion detection systems. The logs were collected from four independent testbeds that were built at the Austrian Institute of Technology (AIT) following the approach by Landauer et al. (2020) [1]. Please refer to the paper for more detailed information on automatic testbed generation and cite it if the data is used for academic publications. In brief, each testbed simulates user accesses to a webserver that runs Horde Webmail and OkayCMS. The duration of the simulation is six days. On the fifth day (2020-03-04) two attacks are launched against each web server.

    The archive AIT-LDS-v1_0.zip contains the directories "data" and "labels".

    The data directory is structured as follows. Each directory mail..com contains the logs of one web server. Each directory user- contains the logs of one user host machine, where one or more users are simulated. Each file log.log in the user- directories contains the activity logs of one particular user.

    Setup details of the web servers:

    OS: Debian Stretch 9.11.6

    Services:

    Apache2

    PHP7

    Exim 4.89

    Horde 5.2.22

    OkayCMS 2.3.4

    Suricata

    ClamAV

    MariaDB

    Setup details of user machines:

    OS: Ubuntu Bionic

    Services:

    Chromium

    Firefox

    User host machines are assigned to web servers in the following way:

    mail.cup.com is accessed by users from host machines user-{0, 1, 2, 6}

    mail.spiral.com is accessed by users from host machines user-{3, 5, 8}

    mail.insect.com is accessed by users from host machines user-{4, 9}

    mail.onion.com is accessed by users from host machines user-{7, 10}

    The following attacks are launched against the web servers (different starting times for each web server, please check the labels for exact attack times):

    Attack 1: multi-step attack with sequential execution of the following attacks:

    nmap scan

    nikto scan

    smtp-user-enum tool for account enumeration

    hydra brute force login

    webshell upload through Horde exploit (CVE-2019-9858)

    privilege escalation through Exim exploit (CVE-2019-10149)

    Attack 2: webshell injection through malicious cookie (CVE-2019-16885)

    Attacks are launched from the following user host machines. In each of the corresponding directories user-, logs of the attack execution are found in the file attackLog.txt:

    user-6 attacks mail.cup.com

    user-5 attacks mail.spiral.com

    user-4 attacks mail.insect.com

    user-7 attacks mail.onion.com

    The log data collected from the web servers includes

    Apache access and error logs

    syscall logs collected with the Linux audit daemon

    suricata logs

    exim logs

    auth logs

    daemon logs

    mail logs

    syslogs

    user logs

    Note that due to their large size, the audit/audit.log files of each server were compressed in a .zip-archive. In case that these logs are needed for analysis, they must first be unzipped.

    Labels are organized in the same directory structure as logs. Each file contains two labels for each log line separated by a comma, the first one based on the occurrence time, the second one based on similarity and ordering. Note that this does not guarantee correct labeling for all lines and that no manual corrections were conducted.

    Version history and related data sets:

    AIT-LDS-v1.0: Four datasets, logs from single host, fine-granular audit logs, mail/CMS.

    AIT-LDS-v1.1: Removed carriage return of line endings in audit.log files.

    AIT-LDS-v2.0: Eight datasets, logs from all hosts, system logs and network traffic, mail/CMS/cloud/web.

    Acknowledgements: Partially funded by the FFG projects INDICAETING (868306) and DECEPT (873980), and the EU project GUARD (833456).

    If you use the dataset, please cite the following publication:

    [1] M. Landauer, F. Skopik, M. Wurzenberger, W. Hotwagner and A. Rauber, "Have it Your Way: Generating Customized Log Datasets With a Model-Driven Simulation Testbed," in IEEE Transactions on Reliability, vol. 70, no. 1, pp. 402-415, March 2021, doi: 10.1109/TR.2020.3031317. [PDF]

  3. Server Logs

    • kaggle.com
    Updated Oct 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vishnu U (2021). Server Logs [Dataset]. https://www.kaggle.com/datasets/vishnu0399/server-logs
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 12, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Vishnu U
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The dataset is a synthetically generated server log based on Apache Server Logging Format. Each line corresponds to each log entry. The log entry has the following parameters :

    Components in Log Entry :

    • IP of client: This refers to the IP address of the client that sent the request to the server.
    • Remote Log Name: Remote name of the User performing the request. In the majority of the applications, this is confidential information and is hidden or not available.
    • User ID: The ID of the user performing the request. In the majority of the applications, this is a piece of confidential information and is hidden or not available.
    • Date and Time in UTC format: The date and time of the request are represented in UTC format as follows: - Day/Month/Year:Hour:Minutes: Seconds +Time-Zone-Correction.
    • Request Type: The type of request (GET, POST, PUT, DELETE) that the server got. This depends on the operation that the request will do.
    • API: The API of the website to which the request is related. Example: When a user accesses a carton shopping website, the API comes as /usr/cart.
    • Protocol and Version: Protocol used for connecting with server and its version.
    • Status Code: Status code that the server returned for the request. Eg: 404 is sent when a requested resource is not found. 200 is sent when the request was successfully served.
    • Byte: The amount of data in bytes that was sent back to the client.
    • Referrer: The websites/source from where the user was directed to the current website. If none it is represented by “-“.
    • UA String: The user agent string contains details of the browser and the host device (like the name, version, device type etc.).
    • Response Time: The response time the server took to serve the request. This is the difference between the timestamps when the request was received and when the request was served.

    Content

    The dataset consists of two files - - logfiles.log is the actual log file in text format - TestFileGenerator.py is the synthetic log file generator. The number of log entries required can be edited in the code.

  4. Web robot detection - Server logs

    • zenodo.org
    • data.niaid.nih.gov
    csv, json
    Updated Jan 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Athanasios Lagopoulos; Athanasios Lagopoulos; Grigorios Tsoumakas; Grigorios Tsoumakas (2021). Web robot detection - Server logs [Dataset]. http://doi.org/10.5281/zenodo.3477932
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 4, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Athanasios Lagopoulos; Athanasios Lagopoulos; Grigorios Tsoumakas; Grigorios Tsoumakas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains server logs from the search engine of the library and information center of the Aristotle University of Thessaloniki in Greece (http://search.lib.auth.gr/). The search engine enables users to check the availability of books and other written works, and search for digitized material and scientific publications. The server logs obtained span an entire month, from March 1st to March 31 2018 and consist of 4,091,155 requests with an average of 131,973 requests per day and a standard deviation of 36,996.7 requests. In total, there are requests from 27,061 unique IP addresses and 3,441 unique user-agent strings. The server logs are in JSON format and they are anonymized by masking the last 6 digits of the IP address and by hashing the last part of the URLs requested (after last /). The dataset also contains the processed form of the server logs as a labelled dataset of log entries grouped into sessions along with their extracted features (simple semantic features). We make this dataset publicly available, the first one in this domain, in order to provide a common ground for testing web robot detection methods, as well as other methods that analyze server logs.

  5. i

    Apache Web Server - Access Log Pre-processing for Web Intrusion Detection

    • ieee-dataport.org
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Anis Hilmi (2025). Apache Web Server - Access Log Pre-processing for Web Intrusion Detection [Dataset]. https://ieee-dataport.org/open-access/apache-web-server-access-log-pre-processing-web-intrusion-detection
    Explore at:
    Dataset updated
    Jan 23, 2025
    Authors
    Muhammad Anis Hilmi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    gmt

  6. Kyoushi Log Data Set

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Landauer; Maximilian Frank; Florian Skopik; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber; Max Landauer; Maximilian Frank; Florian Skopik; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber (2025). Kyoushi Log Data Set [Dataset]. http://doi.org/10.5281/zenodo.5779411
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Max Landauer; Maximilian Frank; Florian Skopik; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber; Max Landauer; Maximilian Frank; Florian Skopik; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This repository contains synthetic log data suitable for evaluation of intrusion detection systems. The logs were collected from a testbed that was built at the Austrian Institute of Technology (AIT) following the approaches by [1], [2], and [3]. Please refer to these papers for more detailed information on the dataset and cite them if the data is used for academic publications. Other than the related AIT-LDSv1.1, this dataset involves a more complex network structure, makes use of a different attack scenario, and collects log data from multiple hosts in the network. In brief, the testbed simulates a small enterprise network including mail server, file share, WordPress server, VPN, firewall, etc. Normal user behavior is simulated to generate background noise. After some days, two attack scenarios are launched against the network. Note that the AIT-LDSv2.0 extends this dataset with additional attack cases and variations of attack parameters.

    The archives have the following structure. The gather directory contains the raw log data from each host in the network, as well as their system configurations. The labels directory contains the ground truth for those log files that are labeled. The processing directory contains configurations for the labeling procedure and the rules directory contains the labeling rules. Labeling of events that are related to the attacks is carried out with the Kyoushi Labeling Framework.

    Each dataset contains traces of a specific attack scenario:

    • Scenario 1 (see gather/attacker_0/logs/sm.log for detailed attack log):
      • nmap scan
      • WPScan
      • dirb scan
      • webshell upload through wpDiscuz exploit (CVE-2020-24186)
      • privilege escalation
    • Scenario 2 (see gather/attacker_0/logs/dnsteal.log for detailed attack log):
      • DNSteal data exfiltration

    The log data collected from the servers includes

    • Apache access and error logs (labeled)
    • audit logs (labeled)
    • auth logs (labeled)
    • VPN logs (labeled)
    • DNS logs (labeled)
    • syslog
    • suricata logs
    • exim logs
    • horde logs
    • mail logs

    Note that only log files from affected servers are labeled. Label files and the directories in which they are located have the same name as their corresponding log file in the gather directory. Labels are in JSON format and comprise the following attributes: line (number of line in corresponding log file), labels (list of labels assigned to that log line), rules (names of labeling rules matching that log line). Note that not all attack traces are labeled in all log files; please refer to the labeling rules in case that some labels are not clear.

    Acknowledgements: Partially funded by the FFG projects INDICAETING (868306) and DECEPT (873980), and the EU project GUARD (833456).

    If you use the dataset, please cite the following publications:

    [1] M. Landauer, F. Skopik, M. Wurzenberger, W. Hotwagner and A. Rauber, "Have it Your Way: Generating Customized Log Datasets With a Model-Driven Simulation Testbed," in IEEE Transactions on Reliability, vol. 70, no. 1, pp. 402-415, March 2021, doi: 10.1109/TR.2020.3031317.

    [2] M. Landauer, M. Frank, F. Skopik, W. Hotwagner, M. Wurzenberger, and A. Rauber, "A Framework for Automatic Labeling of Log Datasets from Model-driven Testbeds for HIDS Evaluation". ACM Workshop on Secure and Trustworthy Cyber-Physical Systems (ACM SaT-CPS 2022), April 27, 2022, Baltimore, MD, USA. ACM.

    [3] M. Frank, "Quality improvement of labels for model-driven benchmark data generation for intrusion detection systems", Master's Thesis, Vienna University of Technology, 2021.

  7. m

    Data from: Pillar 3: Pre-processed web server log file dataset of the...

    • data.mendeley.com
    Updated Dec 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michal Munk (2021). Pillar 3: Pre-processed web server log file dataset of the banking institution [Dataset]. http://doi.org/10.17632/5bvkm76sdc.1
    Explore at:
    Dataset updated
    Dec 6, 2021
    Authors
    Michal Munk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset represents the pre-processed web server log file of the commercial bank. The source of data is the web server of the bank and keeps access of web users starting the year 2009 till 2012. It contains accesses to the bank website during and after the financial crisis. Unnecessary data saved by the web server was removed to keep the focus only on the textual content of the website. Many variables were added to the original log file to make the analysis workable. To keep the privacy of website users, sensitive information in the log file were anonymized. The dataset offers the way to understand the behaviour of stakeholders during and after the crisis and how they comply with the Basel regulations.

  8. Server_logs_dataset

    • kaggle.com
    Updated Jul 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azmat (2020). Server_logs_dataset [Dataset]. https://www.kaggle.com/azmatsiddique/server-logs-dataset/kernels
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 1, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Azmat
    Description

    Dataset

    This dataset was created by Azmat

    Contents

  9. AIT Log Data Set V2.0

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Jun 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber; Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber (2024). AIT Log Data Set V2.0 [Dataset]. http://doi.org/10.5281/zenodo.5789064
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 28, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber; Max Landauer; Florian Skopik; Maximilian Frank; Wolfgang Hotwagner; Markus Wurzenberger; Andreas Rauber
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    AIT Log Data Sets

    This repository contains synthetic log data suitable for evaluation of intrusion detection systems, federated learning, and alert aggregation. A detailed description of the dataset is available in [1]. The logs were collected from eight testbeds that were built at the Austrian Institute of Technology (AIT) following the approach by [2]. Please cite these papers if the data is used for academic publications.

    In brief, each of the datasets corresponds to a testbed representing a small enterprise network including mail server, file share, WordPress server, VPN, firewall, etc. Normal user behavior is simulated to generate background noise over a time span of 4-6 days. At some point, a sequence of attack steps is launched against the network. Log data is collected from all hosts and includes Apache access and error logs, authentication logs, DNS logs, VPN logs, audit logs, Suricata logs, network traffic packet captures, horde logs, exim logs, syslog, and system monitoring logs. Separate ground truth files are used to label events that are related to the attacks. Compared to the AIT-LDSv1.1, a more complex network and diverse user behavior is simulated, and logs are collected from all hosts in the network. If you are only interested in network traffic analysis, we also provide the AIT-NDS containing the labeled netflows of the testbed networks. We also provide the AIT-ADS, an alert data set derived by forensically applying open-source intrusion detection systems on the log data.

    The datasets in this repository have the following structure:

    • The gather directory contains all logs collected from the testbed. Logs collected from each host are located in gather/.
    • The labels directory contains the ground truth of the dataset that indicates which events are related to attacks. The directory mirrors the structure of the gather directory so that each label files is located at the same path and has the same name as the corresponding log file. Each line in the label files references the log event corresponding to an attack by the line number counted from the beginning of the file ("line"), the labels assigned to the line that state the respective attack step ("labels"), and the labeling rules that assigned the labels ("rules"). An example is provided below.
    • The processing directory contains the source code that was used to generate the labels.
    • The rules directory contains the labeling rules.
    • The environment directory contains the source code that was used to deploy the testbed and run the simulation using the Kyoushi Testbed Environment.
    • The dataset.yml file specifies the start and end time of the simulation.

    The following table summarizes relevant properties of the datasets:

    • fox
      • Simulation time: 2022-01-15 00:00 - 2022-01-20 00:00
      • Attack time: 2022-01-18 11:59 - 2022-01-18 13:15
      • Scan volume: High
      • Unpacked size: 26 GB
    • harrison
      • Simulation time: 2022-02-04 00:00 - 2022-02-09 00:00
      • Attack time: 2022-02-08 07:07 - 2022-02-08 08:38
      • Scan volume: High
      • Unpacked size: 27 GB
    • russellmitchell
      • Simulation time: 2022-01-21 00:00 - 2022-01-25 00:00
      • Attack time: 2022-01-24 03:01 - 2022-01-24 04:39
      • Scan volume: Low
      • Unpacked size: 14 GB
    • santos
      • Simulation time: 2022-01-14 00:00 - 2022-01-18 00:00
      • Attack time: 2022-01-17 11:15 - 2022-01-17 11:59
      • Scan volume: Low
      • Unpacked size: 17 GB
    • shaw
      • Simulation time: 2022-01-25 00:00 - 2022-01-31 00:00
      • Attack time: 2022-01-29 14:37 - 2022-01-29 15:21
      • Scan volume: Low
      • Data exfiltration is not visible in DNS logs
      • Unpacked size: 27 GB
    • wardbeck
      • Simulation time: 2022-01-19 00:00 - 2022-01-24 00:00
      • Attack time: 2022-01-23 12:10 - 2022-01-23 12:56
      • Scan volume: Low
      • Unpacked size: 26 GB
    • wheeler
      • Simulation time: 2022-01-26 00:00 - 2022-01-31 00:00
      • Attack time: 2022-01-30 07:35 - 2022-01-30 17:53
      • Scan volume: High
      • No password cracking in attack chain
      • Unpacked size: 30 GB
    • wilson
      • Simulation time: 2022-02-03 00:00 - 2022-02-09 00:00
      • Attack time: 2022-02-07 10:57 - 2022-02-07 11:49
      • Scan volume: High
      • Unpacked size: 39 GB

    The following attacks are launched in the network:

    • Scans (nmap, WPScan, dirb)
    • Webshell upload (CVE-2020-24186)
    • Password cracking (John the Ripper)
    • Privilege escalation
    • Remote command execution
    • Data exfiltration (DNSteal)

    Note that attack parameters and their execution orders vary in each dataset. Labeled log files are trimmed to the simulation time to ensure that their labels (which reference the related event by the line number in the file) are not misleading. Other log files, however, also contain log events generated before or after the simulation time and may therefore be affected by testbed setup or data collection. It is therefore recommended to only consider logs with timestamps within the simulation time for analysis.

    The structure of labels is explained using the audit logs from the intranet server in the russellmitchell data set as an example in the following. The first four labels in the labels/intranet_server/logs/audit/audit.log file are as follows:

    {"line": 1860, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

    {"line": 1861, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

    {"line": 1862, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

    {"line": 1863, "labels": ["attacker_change_user", "escalate"], "rules": {"attacker_change_user": ["attacker.escalate.audit.su.login"], "escalate": ["attacker.escalate.audit.su.login"]}}

    Each JSON object in this file assigns a label to one specific log line in the corresponding log file located at gather/intranet_server/logs/audit/audit.log. The field "line" in the JSON objects specify the line number of the respective event in the original log file, while the field "labels" comprise the corresponding labels. For example, the lines in the sample above provide the information that lines 1860-1863 in the gather/intranet_server/logs/audit/audit.log file are labeled with "attacker_change_user" and "escalate" corresponding to the attack step where the attacker receives escalated privileges. Inspecting these lines shows that they indeed correspond to the user authenticating as root:

    type=USER_AUTH msg=audit(1642999060.603:2226): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:authentication acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

    type=USER_ACCT msg=audit(1642999060.603:2227): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:accounting acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

    type=CRED_ACQ msg=audit(1642999060.615:2228): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:setcred acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

    type=USER_START msg=audit(1642999060.627:2229): pid=27950 uid=33 auid=4294967295 ses=4294967295 msg='op=PAM:session_open acct="jhall" exe="/bin/su" hostname=? addr=? terminal=/dev/pts/1 res=success'

    The same applies to all other labels for this log file and all other log files. There are no labels for logs generated by "normal" (i.e., non-attack) behavior; instead, all log events that have no corresponding JSON object in one of the files from the labels directory, such as the lines 1-1859 in the example above, can be considered to be labeled as "normal". This means that in order to figure out the labels for the log data it is necessary to store the line numbers when processing the original logs from the gather directory and see if these line numbers also appear in the corresponding file in the labels directory.

    Beside the attack labels, a general overview of the exact times when specific attack steps are launched are available in gather/attacker_0/logs/attacks.log. An enumeration of all hosts and their IP addresses is stated in processing/config/servers.yml. Moreover, configurations of each host are provided in gather/ and gather/.

    Version history:

    • AIT-LDS-v1.x: Four datasets, logs from single host, fine-granular audit logs, mail/CMS.
    • AIT-LDS-v2.0: Eight datasets, logs from all hosts, system logs and network traffic, mail/CMS/cloud/web.

    Acknowledgements: Partially funded by the FFG projects INDICAETING (868306) and DECEPT (873980), and the EU projects GUARD (833456) and PANDORA (SI2.835928).

    If you use the dataset, please cite the following publications:

    [1] M. Landauer, F. Skopik, M. Frank, W. Hotwagner,

  10. Z

    Comprehensive Network Logs Dataset for Multi-Device Analysis

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hasan, Raza (2024). Comprehensive Network Logs Dataset for Multi-Device Analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10492769
    Explore at:
    Dataset updated
    Jan 11, 2024
    Dataset provided by
    Hasan, Raza
    Salman, Mahmood
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset comprises diverse logs from various sources, including cloud services, routers, switches, virtualization, network security appliances, authentication systems, DNS, operating systems, packet captures, proxy servers, servers, syslog data, and network data. The logs encompass a wide range of information such as traffic details, user activities, authentication events, DNS queries, network flows, security actions, and system events. By analyzing these logs collectively, users can gain insights into network patterns, anomalies, user authentication, cloud service usage, DNS traffic, network flows, security incidents, and system activities. The dataset is invaluable for network monitoring, performance analysis, anomaly detection, security investigations, and correlating events across the entire network infrastructure.

  11. E-Commerce Website Logs

    • kaggle.com
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KZ Data Lover (2023). E-Commerce Website Logs [Dataset]. https://www.kaggle.com/datasets/kzmontage/e-commerce-website-logs
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    Kaggle
    Authors
    KZ Data Lover
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This is a E-commerce website logs data created for helping the data analysts to practice exploratory data analysis and data visualization. The dataset has data on when the website was accessed, IP address of the source, Country, language in which website was accessed, amount of sales made by that IP address.

    Included columns:

    Time and duration of of accessing the website
    Country, Language & Platform in which it was accessed
    No. of bytes used & IP address of the person accessing website
    Sales or return amount of that person

  12. test-mcp-logs

    • huggingface.co
    Updated Aug 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hugging Face MCP Server (2025). test-mcp-logs [Dataset]. https://huggingface.co/datasets/hf-mcp-server/test-mcp-logs
    Explore at:
    Dataset updated
    Aug 2, 2025
    Dataset provided by
    Hugging Facehttps://huggingface.co/
    Authors
    Hugging Face MCP Server
    Description

    (Put queries first as heuristics don't detect when there are no logs)

  13. d

    Customs and Border Protection Government Web Trends Server Master Dataset

    • catalog.data.gov
    Updated Sep 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Customs and Border Protection (2019). Customs and Border Protection Government Web Trends Server Master Dataset [Dataset]. https://catalog.data.gov/tr/dataset/customs-and-border-protection-government-web-trends-server-master-dataset
    Explore at:
    Dataset updated
    Sep 30, 2019
    Dataset provided by
    U.S. Customs and Border Protection
    Description

    The CBPgov Web Trends Server is a COTS report generation product uses proprietary data storage and standard web server logs as input and supports the Office of Public Affairs in providing advanced reports for web traffic analysis for CBP.gov and related web sites. It utilizes product specific database to support it's functionality.

  14. s

    TDA-Gallica

    • marketplace.sshopencloud.eu
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). TDA-Gallica [Dataset]. https://marketplace.sshopencloud.eu/dataset/armYxP
    Explore at:
    Dataset updated
    May 10, 2023
    Description

    This dataset, containing a topological analysis of server logs, was created in a project that aimed at documenting the behavior of scientists on online platforms by making sense of the digital trace they generate while navigating. The repository contains the Jupyter notebook that was run on the cluster, its aim was to construct the sessions from the large data provided by Gallica user navigations, the Jupyter notebook that contains topological data analysis and cluster visualizations and the final report of the project.

  15. D

    Longitudinal navigation log data on the Radboud University web domain

    • phys-techsciences.datastations.nl
    pdf, txt, zip
    Updated Jan 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S. Verberne; de . de Vries; W. Kraaij; S. Verberne; de . de Vries; W. Kraaij (2024). Longitudinal navigation log data on the Radboud University web domain [Dataset]. http://doi.org/10.17026/DANS-28M-MWHT
    Explore at:
    txt(1896), pdf(539643), zip(17660), zip(244268022)Available download formats
    Dataset updated
    Jan 8, 2024
    Dataset provided by
    DANS Data Station Physical and Technical Sciences
    Authors
    S. Verberne; de . de Vries; W. Kraaij; S. Verberne; de . de Vries; W. Kraaij
    License

    https://doi.org/10.17026/fp39-0x58https://doi.org/10.17026/fp39-0x58

    Description

    We have collected the access logs for our university's web domain over a time span of 4.5 years. We now release the pre-processed web server log of a 3-month period for research into user navigation behavior. We preprocessed the data so that only successful GET requests of web pages by non-bot users are kept. The information that is included per entry is: unique user id, timestamp, GET request (URL), status code, the size of the object returned to the client, and the referrer URL. The resulting size of the 3-month collection is 9.6M page visits (190K unique URLs) by 744K unique visitors. The data collection allows for research on, among other things, user navigation, browsing and stopping behavior and web user clustering. Date Submitted: 2016-04-28

  16. Z

    Passive Operating System Fingerprinting Revisited - Network Flows Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laštovička, Martin (2023). Passive Operating System Fingerprinting Revisited - Network Flows Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7635137
    Explore at:
    Dataset updated
    Feb 14, 2023
    Dataset provided by
    Velan, Petr
    Čeleda, Pavel
    Husák, Martin
    Laštovička, Martin
    Jirsík, Tomáš
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For the evaluation of OS fingerprinting methods, we need a dataset with the following requirements:

    First, the dataset needs to be big enough to capture the variability of the data. In this case, we need many connections from different operating systems.

    Second, the dataset needs to be annotated, which means that the corresponding operating system needs to be known for each network connection captured in the dataset. Therefore, we cannot just capture any network traffic for our dataset; we need to be able to determine the OS reliably.

    To overcome these issues, we have decided to create the dataset from the traffic of several web servers at our university. This allows us to address the first issue by collecting traces from thousands of devices ranging from user computers and mobile phones to web crawlers and other servers. The ground truth values are obtained from the HTTP User-Agent, which resolves the second of the presented issues. Even though most traffic is encrypted, the User-Agent can be recovered from the web server logs that record every connection’s details. By correlating the IP address and timestamp of each log record to the captured traffic, we can add the ground truth to the dataset.

    For this dataset, we have selected a cluster of five web servers that host 475 unique university domains for public websites. The monitoring point recording the traffic was placed at the backbone network connecting the university to the Internet.

    The dataset used in this paper was collected from approximately 8 hours of university web traffic throughout a single workday. The logs were collected from Microsoft IIS web servers and converted from W3C extended logging format to JSON. The logs are referred to as web logs and are used to annotate the records generated from packet capture obtained by using a network probe tapped into the link to the Internet.

    The entire dataset creation process consists of seven steps:

    The packet capture was processed by the Flowmon flow exporter (https://www.flowmon.com) to obtain primary flow data containing information from TLS and HTTP protocols.

    Additional statistical features were extracted using GoFlows flow exporter (https://github.com/CN-TU/go-flows).

    The primary flows were filtered to remove incomplete records and network scans.

    The flows from both exporters were merged together into records containing fields from both sources.

    Web logs were filtered to cover the same time frame as the flow records.

    Web logs were paired with the flow records based on shared properties (IP address, port, time).

    The last step was to convert the User-Agent values into the operating system using a Python version of the open-source tool ua-parser (https://github.com/ua-parser/uap-python). We replaced the unstructured User-Agent string in the records with the resulting OS.

    The collected and enriched flows contain 111 data fields that can be used as features for OS fingerprinting or any other data analyses. The fields grouped by their area are listed below:

    basic flow properties - flow_ID;start;end;L3 PROTO;L4 PROTO;BYTES A;PACKETS A;SRC IP;DST IP;TCP flags A;SRC port;DST port;packetTotalCountforward;packetTotalCountbackward;flowDirection;flowEndReason;

    IP parameters - IP ToS;maximumTTLforward;maximumTTLbackward;IPv4DontFragmentforward;IPv4DontFragmentbackward;

    TCP parameters - TCP SYN Size;TCP Win Size;TCP SYN TTL;tcpTimestampFirstPacketbackward;tcpOptionWindowScaleforward;tcpOptionWindowScalebackward;tcpOptionSelectiveAckPermittedforward;tcpOptionSelectiveAckPermittedbackward;tcpOptionMaximumSegmentSizeforward;tcpOptionMaximumSegmentSizebackward;tcpOptionNoOperationforward;tcpOptionNoOperationbackward;synAckFlag;tcpTimestampFirstPacketforward;

    HTTP - HTTP Request Host;URL;

    User-agent - UA OS family;UA OS major;UA OS minor;UA OS patch;UA OS patch minor;

    TLS - TLS_CONTENT_TYPE;TLS_HANDSHAKE_TYPE;TLS_SETUP_TIME;TLS_SERVER_VERSION;TLS_SERVER_RANDOM;TLS_SERVER_SESSION_ID;TLS_CIPHER_SUITE;TLS_ALPN;TLS_SNI;TLS_SNI_LENGTH;TLS_CLIENT_VERSION;TLS_CIPHER_SUITES;TLS_CLIENT_RANDOM;TLS_CLIENT_SESSION_ID;TLS_EXTENSION_TYPES;TLS_EXTENSION_LENGTHS;TLS_ELLIPTIC_CURVES;TLS_EC_POINT_FORMATS;TLS_CLIENT_KEY_LENGTH;TLS_ISSUER_CN;TLS_SUBJECT_CN;TLS_SUBJECT_ON;TLS_VALIDITY_NOT_BEFORE;TLS_VALIDITY_NOT_AFTER;TLS_SIGNATURE_ALG;TLS_PUBLIC_KEY_ALG;TLS_PUBLIC_KEY_LENGTH;TLS_JA3_FINGERPRINT;

    Packet timings - NPM_CLIENT_NETWORK_TIME;NPM_SERVER_NETWORK_TIME;NPM_SERVER_RESPONSE_TIME;NPM_ROUND_TRIP_TIME;NPM_RESPONSE_TIMEOUTS_A;NPM_RESPONSE_TIMEOUTS_B;NPM_TCP_RETRANSMISSION_A;NPM_TCP_RETRANSMISSION_B;NPM_TCP_OUT_OF_ORDER_A;NPM_TCP_OUT_OF_ORDER_B;NPM_JITTER_DEV_A;NPM_JITTER_AVG_A;NPM_JITTER_MIN_A;NPM_JITTER_MAX_A;NPM_DELAY_DEV_A;NPM_DELAY_AVG_A;NPM_DELAY_MIN_A;NPM_DELAY_MAX_A;NPM_DELAY_HISTOGRAM_1_A;NPM_DELAY_HISTOGRAM_2_A;NPM_DELAY_HISTOGRAM_3_A;NPM_DELAY_HISTOGRAM_4_A;NPM_DELAY_HISTOGRAM_5_A;NPM_DELAY_HISTOGRAM_6_A;NPM_DELAY_HISTOGRAM_7_A;NPM_JITTER_DEV_B;NPM_JITTER_AVG_B;NPM_JITTER_MIN_B;NPM_JITTER_MAX_B;NPM_DELAY_DEV_B;NPM_DELAY_AVG_B;NPM_DELAY_MIN_B;NPM_DELAY_MAX_B;NPM_DELAY_HISTOGRAM_1_B;NPM_DELAY_HISTOGRAM_2_B;NPM_DELAY_HISTOGRAM_3_B;NPM_DELAY_HISTOGRAM_4_B;NPM_DELAY_HISTOGRAM_5_B;NPM_DELAY_HISTOGRAM_6_B;NPM_DELAY_HISTOGRAM_7_B;

    ICMP - ICMP TYPE;

    The details of OS distribution grouped by the OS family are summarized in the table below. The Other OS family contains records generated by web crawling bots that do not include OS information in the User-Agent.

        OS Family
        Number of flows
    
    
    
    
        Other
        42474
    
    
        Windows
        40349
    
    
        Android
        10290
    
    
        iOS
        8840
    
    
        Mac OS X
        5324
    
    
        Linux
        1589
    
    
        Ubuntu
        653
    
    
        Fedora
        88
    
    
        Chrome OS
        53
    
    
        Symbian OS
        1
    
    
        Slackware
        1
    
    
        Linux Mint
        1
    
  17. p

    HTTP-level e-commerce data based on server access logs for an online store

    • dona.pwr.edu.pl
    Updated 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grzegorz Chodak; Grażyna Suchacka; Yash Chawla (2020). HTTP-level e-commerce data based on server access logs for an online store [Dataset]. http://doi.org/10.1016/j.comnet.2020.107589
    Explore at:
    Dataset updated
    2020
    Authors
    Grzegorz Chodak; Grażyna Suchacka; Yash Chawla
    Description

    Library of Wroclaw University of Science and Technology scientific output (DONA database)

  18. Web Server Access Log

    • zenodo.org
    zip
    Updated May 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rikhi Ram Jagat; Rikhi Ram Jagat; Dilip Singh Sisodia; Pradeep Singh; Dilip Singh Sisodia; Pradeep Singh (2024). Web Server Access Log [Dataset]. http://doi.org/10.5281/zenodo.7895435
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 20, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rikhi Ram Jagat; Rikhi Ram Jagat; Dilip Singh Sisodia; Pradeep Singh; Dilip Singh Sisodia; Pradeep Singh
    Description

    Small E-commerce of course selling website web server access log.

  19. e

    Open Data Portal Access Numbers

    • data.europa.eu
    csv, json
    Updated May 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zentrales IT-Management Schleswig-Holstein (2024). Open Data Portal Access Numbers [Dataset]. https://data.europa.eu/data/datasets/0bd26ab9-c9a7-4e91-a1bb-672e057937b7?locale=en
    Explore at:
    csv(584), json(649)Available download formats
    Dataset updated
    May 12, 2024
    Dataset authored and provided by
    Zentrales IT-Management Schleswig-Holstein
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Description

    Actions and different users of the Schleswig-Holstein Open Data Portal

    The numbers are obtained with Matomo. Due to the anonymised IP address, the measured number of different users is likely to be too low.

    From comparisons with the server logs it is known that about 40 % of the visits are not registered by Matomo and are therefore missing in these figures.

    Only actions within the web interface of the open data portal are counted. API calls and data downloads that take place outside the actual portal are not counted.

    Of 17. At 7:45 a.m. on December 1, 2020, no measurements were carried out due to a technical error.

    The following columns are included:

    — ‘month’ — month in format ‘yyyy-mm’ — ‘actions’ — Number of actions counted by Matomo — ‘different users’ — number of Matomo counted different users

    Column separator is comma.

  20. Iot Device Network Logs

    • kaggle.com
    Updated Feb 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sahil Dixit (2020). Iot Device Network Logs [Dataset]. https://www.kaggle.com/speedwall10/iot-device-network-logs/kernels
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 20, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sahil Dixit
    Description

    Preprocessed dataset for network based intrusion detection system in Iot Devices. Ultrasonic Sensor with Arduino and NodeMCU used to monitor the network and collect the network logs. NodeMCU with ESP8266 wifi module was used to send data to the server via wifi.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Farzin Zaker (2021). Online Shopping Store - Web Server Logs [Dataset]. http://doi.org/10.7910/DVN/3QBYB5

Online Shopping Store - Web Server Logs

Explore at:
16 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 20, 2021
Dataset provided by
Harvard Dataverse
Authors
Farzin Zaker
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Nginx server access log for an online shopping store

Search
Clear search
Close search
Google apps
Main menu