100+ datasets found
  1. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Nov 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Nov 21, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6599 points on November 21, 2025, gaining 0.92% from the previous session. Over the past month, the index has declined 1.50%, though it remains 10.55% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on November of 2025.

  2. b

    Stock Market Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Stock Market Dataset [Dataset]. https://brightdata.com/products/datasets/financial/stock-market
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 9, 2025
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our Stock Market dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.

    Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.

  3. 9000+ Tickers of Stock Market Data (Full History)

    • kaggle.com
    zip
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jake wright (2024). 9000+ Tickers of Stock Market Data (Full History) [Dataset]. https://www.kaggle.com/datasets/jakewright/9000-tickers-of-stock-market-data-full-history
    Explore at:
    zip(1918054636 bytes)Available download formats
    Dataset updated
    Nov 13, 2024
    Authors
    jake wright
    Description

    Stock Market Data: 9,000+ Tickers (1962 - Present)

    Dataset Overview

    This dataset offers comprehensive historical stock market data covering over 9,000 tickers from 1962 to the present day. It includes essential daily trading information, making it suitable for various financial analyses, trend studies, and algorithmic trading model development.

    Columns

    • Date: The date of the recorded trading data.
    • Ticker: The stock symbol of the company.
    • Open: Opening price of the stock on the trading day.
    • High: Highest price reached during the trading day.
    • Low: Lowest price reached during the trading day.
    • Close: Closing price of the stock on the trading day.
    • Volume: The total number of shares traded during the day.
    • Dividends: Cash dividends issued on the date, if applicable.
    • Stock Splits: Stock split factor for the date, if any split occurred.

    Usage

    This dataset is ideal for: - Time-Series Analysis: Track stock price trends over time, examining daily, monthly, and yearly patterns across sectors. - Algorithmic Trading: Develop and backtest trading strategies using historical price movements and volume data. - Machine Learning Applications: Train models for stock price prediction, volatility forecasting, or portfolio optimization. - Quantitative Research: Perform event studies, analyze the impact of dividends and stock splits, and assess long-term investment strategies. - Comparative Analysis: Evaluate performance across industries or against broader market trends by analyzing multiple tickers in one dataset.

    This dataset serves as a robust resource for academic research, quantitative finance studies, and financial technology development.

  4. Stock Market Data Asia ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Asia ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-asia-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Nepal, Vietnam, Indonesia, Cyprus, Kyrgyzstan, Korea (Democratic People's Republic of), Malaysia, Uzbekistan, Maldives, Macao, Asia
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  5. Stock Market: Historical Data of Top 10 Companies

    • kaggle.com
    zip
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Pitroda (2023). Stock Market: Historical Data of Top 10 Companies [Dataset]. https://www.kaggle.com/datasets/khushipitroda/stock-market-historical-data-of-top-10-companies
    Explore at:
    zip(486977 bytes)Available download formats
    Dataset updated
    Jul 18, 2023
    Authors
    Khushi Pitroda
    Description

    The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.

    Data Analysis Tasks:

    1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.

    2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.

    3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.

    4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.

    5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.

    Machine Learning Tasks:

    1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

    2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).

    3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.

    4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.

    5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.

    The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.

    It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.

    This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.

    By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.

    Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.

    In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.

  6. n

    Research data underpinning "Investigating Reinforcement Learning Approaches...

    • data.ncl.ac.uk
    application/csv
    Updated Aug 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zheng Luo (2024). Research data underpinning "Investigating Reinforcement Learning Approaches In Stock Market Trading" [Dataset]. http://doi.org/10.25405/data.ncl.26539735.v1
    Explore at:
    application/csvAvailable download formats
    Dataset updated
    Aug 13, 2024
    Dataset provided by
    Newcastle University
    Authors
    Zheng Luo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The final dataset utilised for the publication "Investigating Reinforcement Learning Approaches In Stock Market Trading" was processed by downloading and combining data from multiple reputable sources to suit the specific needs of this project. Raw data were retrieved by downloading them using a Python finance API. Afterwards, Python and NumPy were used to combine and normalise the data to create the final dataset.The raw data was sourced as follows:Stock Prices of NVIDIA & AMD, Financial Indexes, and Commodity Prices: Retrieved from Yahoo Finance.Economic Indicators: Collected from the US Federal Reserve.The dataset was normalised to minute intervals, and the stock prices were adjusted to account for stock splits.This dataset was used for exploring the application of reinforcement learning in stock market trading. After creating the dataset, it was used in s reinforcement learning environment to train several reinforcement learning algorithms, including deep Q-learning, policy networks, policy networks with baselines, actor-critic methods, and time series incorporation. The performance of these algorithms was then compared based on profit made and other financial evaluation metrics, to investigate the application of reinforcement learning algorithms in stock market trading.The attached 'README.txt' contains methodological information and a glossary of all the variables in the .csv file.

  7. F

    Stock Market Total Value Traded to GDP for United States

    • fred.stlouisfed.org
    json
    Updated May 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Stock Market Total Value Traded to GDP for United States [Dataset]. https://fred.stlouisfed.org/series/DDDM02USA156NWDB
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 7, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Stock Market Total Value Traded to GDP for United States (DDDM02USA156NWDB) from 1975 to 2019 about market cap, stock market, trade, GDP, and USA.

  8. Share of Americans investing money in the stock market 1999-2025

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2025 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2025
    Area covered
    United States
    Description

    In 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  9. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Nov 21, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, fell to 48588 points on November 21, 2025, losing 2.48% from the previous session. Over the past month, the index has declined 1.46%, though it remains 26.92% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on November of 2025.

  10. Stock Market Dataset

    • kaggle.com
    zip
    Updated Oct 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prince Rajak (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/prince7489/stock-market-dataset
    Explore at:
    zip(1413 bytes)Available download formats
    Dataset updated
    Oct 28, 2025
    Authors
    Prince Rajak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains 60 days of simulated stock market trading data including opening price, closing price, daily high, daily low, and trade volume. It is designed to support financial analysis, price forecasting models, trend analysis, and visualization projects.

  11. T

    Indonesia Stock Market (JCI) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Indonesia Stock Market (JCI) Data [Dataset]. https://tradingeconomics.com/indonesia/stock-market
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 6, 1990 - Nov 21, 2025
    Area covered
    Indonesia
    Description

    Indonesia's main stock market index, the JCI, fell to 8414 points on November 21, 2025, losing 0.07% from the previous session. Over the past month, the index has climbed 3.21% and is up 16.94% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Indonesia. Indonesia Stock Market (JCI) - values, historical data, forecasts and news - updated on November of 2025.

  12. Largest stock exchange operators worldwide 2025, by value of traded shares

    • statista.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest stock exchange operators worldwide 2025, by value of traded shares [Dataset]. https://www.statista.com/statistics/270127/largest-stock-exchanges-worldwide-by-trading-volume/
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2025
    Area covered
    Worldwide
    Description

    This statistic shows the largest global stock exchanges globally as of March 2025, ranked by the value of electronic order book share trading. In that time, the NYSE Stock Market was the largest stock exchange worldwide, with the value of EOB shares traded amounting to *** trillion U.S. dollars. Stock exchanges — additional information Stock exchanges are an important part of the free market economic system and are the most important component of the stock market. A stock exchange provides the setting in which stockbrokers, sellers, buyers, and traders can be brought together to take part in the sale of shares, bonds, derivatives and other securities. The core function of a stock exchange is to enable the fair and orderly trading, as well as the provision of price information, of any securities being traded on that exchange. Originally the exchanges were physical places (in some world locations the goods are still traded over-the-counter) but with time, they took the shape of an electronic platform. In order that company shares may be bought, traded and sold on a stock exchange, the company is required to have undergone an initial public offering process (IPO) on that particular exchange. The initial public offering of Alibaba Group Holding, a Chinese company operating in the e-commerce sector, on the New York Stock Exchange in September 2014, was the largest listing in the United States since 1996. The IPO of Alibaba Group Holding raised approximately ***** billion U.S. dollars.

  13. Trading volume of China's stock market 2013-2024

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Trading volume of China's stock market 2013-2024 [Dataset]. https://www.statista.com/statistics/458183/china-stock-market-trading-volume/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China
    Description

    At yearend 2024, the trading volume of China's stock market had amounted to approximately ** trillion shares. The statistic shows the trading volume of stock transactions taking place at both the Shanghai Stock Exchange and the Shenzhen Stock Exchange. The bourses are the vanguard of China's trading industry.

  14. Stock Market Dataset

    • kaggle.com
    zip
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/stock-market-dataset
    Explore at:
    zip(1075471 bytes)Available download formats
    Dataset updated
    Jan 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.

    Key Features Market Metrics:

    Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:

    RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:

    Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:

    GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:

    Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:

    Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.

  15. Stock Market Data North America ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data North America ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-north-america-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Honduras, Panama, Saint Pierre and Miquelon, Belize, Guatemala, Greenland, United States of America, El Salvador, Bermuda, Mexico, North America
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  16. Largest stock exchange operators worldwide 2025, by market capitalization

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Largest stock exchange operators worldwide 2025, by market capitalization [Dataset]. https://www.statista.com/statistics/270126/largest-stock-exchange-operators-by-market-capitalization-of-listed-companies/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2025
    Area covered
    Worldwide
    Description

    The New York Stock Exchange (NYSE) is the largest stock exchange in the world, with an equity market capitalization of almost ** trillion U.S. dollars as of November 2025. The following largest three exchanges were the NASDAQ, PINK Exchange, and the Frankfurt Exchange. What is a stock exchange? A stock exchange is a marketplace where stockbrokers, traders, buyers, and sellers can trade in equities products. The largest exchanges have thousands of listed companies. These companies sell shares of their business, giving the general public the opportunity to invest in them. The oldest stock exchange worldwide is the Frankfurt Stock Exchange, founded in the late sixteenth century. Other functions of a stock exchange Since these are publicly traded companies, every firm listed on a stock exchange has had an initial public offering (IPO). The largest IPOs can raise billions of dollars in equity for the firm involved. Related to stock exchanges are derivatives exchanges, where stock options, futures contracts, and other derivatives can be traded.

  17. Stock trading value on Taiwan Stock Exchange market 2014-2024

    • statista.com
    Updated Sep 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Stock trading value on Taiwan Stock Exchange market 2014-2024 [Dataset]. https://www.statista.com/statistics/950223/taiwan-stock-trading-value-on-stock-exchange-market/
    Explore at:
    Dataset updated
    Sep 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Taiwan
    Description

    This statistic shows the total trading value of stocks on Taiwan Stock Exchange market from 2014 to 2024. In 2024, the total stock trading value on Taiwan Stock Exchange market reached around ***** trillion New Taiwan dollars.

  18. T

    United Kingdom Stock Market Index (GB100) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom Stock Market Index (GB100) Data [Dataset]. https://tradingeconomics.com/united-kingdom/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1984 - Nov 21, 2025
    Area covered
    United Kingdom
    Description

    United Kingdom's main stock market index, the GB100, rose to 9532 points on November 21, 2025, gaining 0.04% from the previous session. Over the past month, the index has climbed 0.17% and is up 15.37% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on November of 2025.

  19. U

    United States US: Stocks Traded: Total Value

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Stocks Traded: Total Value [Dataset]. https://www.ceicdata.com/en/united-states/financial-sector/us-stocks-traded-total-value
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    United States
    Variables measured
    Turnover
    Description

    United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.

  20. T

    Hong Kong Stock Market Index (HK50) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Hong Kong Stock Market Index (HK50) Data [Dataset]. https://tradingeconomics.com/hong-kong/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 31, 1964 - Nov 21, 2025
    Area covered
    Hong Kong
    Description

    Hong Kong's main stock market index, the HK50, fell to 25220 points on November 21, 2025, losing 2.38% from the previous session. Over the past month, the index has declined 2.18%, though it remains 31.15% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Hong Kong. Hong Kong Stock Market Index (HK50) - values, historical data, forecasts and news - updated on November of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market

United States Stock Market Index Data

United States Stock Market Index - Historical Dataset (1928-01-03/2025-11-21)

Explore at:
20 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, json, csvAvailable download formats
Dataset updated
Nov 21, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 3, 1928 - Nov 21, 2025
Area covered
United States
Description

The main stock market index of United States, the US500, rose to 6599 points on November 21, 2025, gaining 0.92% from the previous session. Over the past month, the index has declined 1.50%, though it remains 10.55% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on November of 2025.

Search
Clear search
Close search
Google apps
Main menu