https://choosealicense.com/licenses/bsd/https://choosealicense.com/licenses/bsd/
Content
This is a dataset of Spotify tracks over a range of 125 different genres. Each track has some audio features associated with it. The data is in CSV format which is tabular and can be loaded quickly.
Usage
The dataset can be used for:
Building a Recommendation System based on some user input or preference Classification purposes based on audio features and available genres Any other application that you can think of. Feel free to discuss!
Column… See the full description on the dataset page: https://huggingface.co/datasets/maharshipandya/spotify-tracks-dataset.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This Spotify ML Practice Dataset is designed for beginners to explore, practice, and build machine learning models, including regression, classification, and feature engineering workflows. Originally comprising 24 raw features, the dataset now has 158 engineered features and 114,000+ records, making it a comprehensive resource for end-to-end ML pipelines.
Primary Goals:
Attribute | Description |
---|---|
popularity | Integer score (0–100) reflecting track popularity |
duration_ms | Original track duration in milliseconds (dropped after engineering) |
explicit | Binary flag (0: clean, 1: explicit lyrics) |
Audio Features | danceability , energy , loudness , speechiness , acousticness , instrumentalness , liveness , valence , tempo |
Structural Features | key , mode , time_signature (dropped after combining into key_mode ) |
Genre/Label | track_genre (object), track_genre_le (label-encoded), plus 114 dummy columns prefixed is_genre_ |
Custom Metrics | e.g., loudness_intensity , happy_dance , tempo_vs_genre , energy_rank_pct , mood_pca , etc. |
Clustering Targets | mood_cluster , acoustic_valence_mood_cluster (int32 clusters) |
Other Counts/Freqs | artist_song_count , album_freq , artists_avg_popularity |
Note: A total of 114 features for genre were generated via
pd.get_dummies(df['track_genre'], prefix='is_genre_')
, dramatically increasing feature dimensionality to allow one-hot encoded classification tasks.
index
, album_name
, track_name
, duration_ms
, duration_min
, key
, artists
, track_id
to remove identifiers and redundant data.explicit
from boolean to integer for modelling.key
and mode
into a composite key_mode
integer to capture musical structure.track_genre
into 114 is_genre_
columns to handle high cardinality categorical data.track_genre_le
for multiclass classification practice.loudness_intensity
, mood_pca
) to enrich model inputs.popularity
using audio/structural/custom features.music genre
via one-hot features or label encoding.MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Description: This dataset contains a collection of songs fetched from the Spotify API, covering various genres including "acoustic", "afrobeat", "alt-rock", "alternative", "ambient", "anime", "black-metal", "bluegrass", "blues", "bossanova", "brazil", "breakbeat", "british", "cantopop", "chicago-house", "children", "chill", "classical", "club", "comedy", "country", "dance", "dancehall", "death-metal", "deep-house", "detroit-techno", "disco", "disney", "drum-and-bass", "dub", "dubstep", "edm", "electro", "electronic", "emo", "folk", "forro", "french", "funk", "garage", "german", "gospel", "goth", "grindcore", "groove", "grunge", "guitar", "happy", "hard-rock", "hardcore", "hardstyle", "heavy-metal", "hip-hop", "holidays", "honky-tonk", "house", "idm", "indian", "indie", "indie-pop", "industrial", "iranian", "j-dance", "j-idol", "j-pop", "j-rock", "jazz", "k-pop", "kids", "latin", "latino", "malay", "mandopop", "metal", "metal-misc", "metalcore", "minimal-techno", "movies", "mpb", "new-age", "new-release", "opera", "pagode", "party", "philippines-opm", "piano", "pop", "pop-film", "post-dubstep", "power-pop", "progressive-house", "psych-rock", "punk", "punk-rock", "r-n-b", "rainy-day", "reggae", "reggaeton", "road-trip", "rock", "rock-n-roll", "rockabilly", "romance", "sad", "salsa", "samba", "sertanejo", "show-tunes", "singer-songwriter", "ska", "sleep", "songwriter", "soul", "soundtracks", "spanish", "study", "summer", "swedish", "synth-pop", "tango", "techno", "trance", "trip-hop", "turkish", "work-out", "world-music". Each entry in the dataset provides detailed information about a song, including its name, artists, album, popularity, duration, and whether it is explicit.
Data Collection Method: The data was collected using the Spotify Web API through a Python script. The script performed searches for different genres and retrieved the top tracks for each genre. The fetched data was then compiled and saved into a CSV file.
Columns Description: id: Unique identifier for the track on Spotify. name: Name of the track. genre: genre of the song. artists: Names of the artists who performed the track, separated by commas if there are multiple artists. album: Name of the album the track belongs to. popularity: Popularity score of the track (0-100, where higher is more popular). duration_ms: Duration of the track in milliseconds. explicit: Boolean indicating whether the track contains explicit content.
Potential Uses: This dataset can be used for a variety of purposes, including but not limited to:
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Spotify Tracks Dataset contains information on tracks from over 125 music genres, including both audio features (e.g., danceability, energy, valence) and metadata (e.g., title, artist, genre).
2) Data Utilization (1) Characteristics of the Spotify Tracks Dataset: • The data is structured in a tabular format at the track level, where each column represents numerical or categorical features based on musical properties. This makes it suitable for recommendation systems, genre classification, and emotion analysis. • It includes multi-dimensional attributes grounded in music theory such as track duration, time signature, energy, loudness, tempo, and speechiness—enabling its use in music classification and clustering tasks.
(2) Applications of the Spotify Tracks Dataset: • Design of Music Recommendation Systems: It can be used to build content-based filtering systems or hybrid recommendation algorithms based on user preferences.
This dataset provides detailed metadata and audio analysis for a wide collection of Spotify music tracks across various genres. It includes track-level information such as popularity, tempo, energy, danceability, and other musical features that can be used for music recommendation systems, genre classification, or trend analysis. The dataset is a rich source for exploring music consumption patterns and user preferences based on song characteristics.
This dataset contains rows of individual music tracks, each described by both metadata (such as track name, artist, album, and genre) and quantitative audio features. These features reflect different musical attributes such as energy, acousticness, instrumentalness, valence, and more, making it ideal for audio machine learning projects and exploratory data analysis.
Column Name | Description |
---|---|
index | Unique index for each track (can be ignored for analysis) |
track_id | Spotify's unique identifier for the track |
artists | Name of the performing artist(s) |
album_name | Title of the album the track belongs to |
track_name | Title of the track |
popularity | Popularity score on Spotify (0–100 scale) |
duration_ms | Duration of the track in milliseconds |
explicit | Indicates whether the track contains explicit content |
danceability | How suitable the track is for dancing (0.0 to 1.0) |
energy | Intensity and activity level of the track (0.0 to 1.0) |
key | Musical key (0 = C, 1 = C♯/D♭, …, 11 = B) |
loudness | Overall loudness of the track in decibels (dB) |
mode | Modality (major = 1, minor = 0) |
speechiness | Presence of spoken words in the track (0.0 to 1.0) |
acousticness | Confidence measure of whether the track is acoustic (0.0 to 1.0) |
instrumentalness | Predicts whether the track contains no vocals (0.0 to 1.0) |
liveness | Presence of an audience in the recording (0.0 to 1.0) |
valence | Musical positivity conveyed (0.0 = sad, 1.0 = happy) |
tempo | Estimated tempo in beats per minute (BPM) |
time_signature | Time signature of the track (e.g., 4 = 4/4) |
track_genre | Assigned genre label for the track |
This dataset is valuable for:
key
, mode
, and explicit
may need to be mapped for better readability in visualization.Explore a dataset of 60,000 Spotify tracks across six languages: English, Hindi, Tamil, Telugu, Malayalam, and Korean
https://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights into music trends, artist popularity, and streaming analytics with our comprehensive Spotify Dataset. Designed for music analysts, marketers, and businesses, this dataset provides structured and reliable data from Spotify to enhance market research, content strategy, and audience engagement.
Dataset Features
Track Information: Access detailed data on songs, including track name, artist, album, genre, and release date. Streaming Popularity: Extract track popularity scores, listener engagement metrics, and ranking trends. Artist & Album Insights: Analyze artist performance, album releases, and genre trends over time. Related Searches & Recommendations: Track related search terms and suggested content for deeper audience insights. Historical & Real-Time Data: Retrieve historical streaming data or access continuously updated records for real-time trend analysis.
Customizable Subsets for Specific Needs Our Spotify Dataset is fully customizable, allowing you to filter data based on track popularity, artist, genre, release date, or listener engagement. Whether you need broad coverage for industry analysis or focused data for content optimization, we tailor the dataset to your needs.
Popular Use Cases
Market Analysis & Trend Forecasting: Identify emerging music trends, genre popularity, and listener preferences. Artist & Label Performance Tracking: Monitor artist rankings, album success, and audience engagement. Competitive Intelligence: Analyze competitor music strategies, playlist placements, and streaming performance. AI & Machine Learning Applications: Use structured music data to train AI models for recommendation engines, playlist curation, and predictive analytics. Advertising & Sponsorship Insights: Identify high-performing tracks and artists for targeted advertising and sponsorship opportunities.
Whether you're optimizing music marketing, analyzing streaming trends, or enhancing content strategies, our Spotify Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for Spotify Million Song Dataset
Dataset Summary
This is Spotify Million Song Dataset. This dataset contains song names, artists names, link to the song and lyrics. This dataset can be used for recommending songs, classifying or clustering songs.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]
Dataset Structure
Data Instances
[More Information Needed]
Data… See the full description on the dataset page: https://huggingface.co/datasets/vishnupriyavr/spotify-million-song-dataset.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Spotify Playlist-ORIGINS Dataset is a dataset of Spotify playlists called ORIGINS, which individuals have made with their favorite songs since 2014.
2) Data Utilization (1) Spotify Playlist-ORIGINS Dataset has characteristics that: • This dataset contains detailed music information for each playlist, including song name, artist, album, genre, release year, track ID, and structured metadata such as name, description, and song order for each playlist. (2) Spotify Playlist-ORIGINS Dataset can be used to: • Playlist-based music recommendation and user preference analysis: It can be used to develop a machine learning/deep learning-based music recommendation system or to study user preference analysis using playlist and song information. • Music Trend and Genre Popularity Analysis: It analyzes release year, genre, and artist data and can be used to study the music industry and culture, including music trends by period and genre, and changes in popular artists and songs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is based on the subset of users in the #nowplaying dataset who publish their #nowplaying tweets via Spotify. In principle, the dataset holds users, their playlists and the tracks contained in these playlists.
The csv-file holding the dataset contains the following columns: "user_id", "artistname", "trackname", "playlistname", where
The separator used is , each entry is enclosed by double quotes and the escape character used is \.
A description of the generation of the dataset and the dataset itself can be found in the following paper:
Pichl, Martin; Zangerle, Eva; Specht, Günther: "Towards a Context-Aware Music Recommendation Approach: What is Hidden in the Playlist Name?" in 15th IEEE International Conference on Data Mining Workshops (ICDM 2015), pp. 1360-1365, IEEE, Atlantic City, 2015.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was created using Spotify developer API. It consists of user-created as well as Spotify-curated playlists. The dataset consists of 1 million playlists, 3 million unique tracks, 3 million unique albums, and 1.3 million artists. The data is stored in a SQL database, with the primary entities being songs, albums, artists, and playlists. Each of the aforementioned entities are represented by unique IDs (Spotify URI). Data is stored into following tables:
album
artist
track
playlist
track_artist1
track_playlist1
album
| id | name | uri |
id: Album ID as provided by Spotify name: Album Name as provided by Spotify uri: Album URI as provided by Spotify
artist
| id | name | uri |
id: Artist ID as provided by Spotify name: Artist Name as provided by Spotify uri: Artist URI as provided by Spotify
track
| id | name | duration | popularity | explicit | preview_url | uri | album_id |
id: Track ID as provided by Spotify name: Track Name as provided by Spotify duration: Track Duration (in milliseconds) as provided by Spotify popularity: Track Popularity as provided by Spotify explicit: Whether the track has explicit lyrics or not. (true or false) preview_url: A link to a 30 second preview (MP3 format) of the track. Can be null uri: Track Uri as provided by Spotify album_id: Album Id to which the track belongs
playlist
| id | name | followers | uri | total_tracks |
id: Playlist ID as provided by Spotify name: Playlist Name as provided by Spotify followers: Playlist Followers as provided by Spotify uri: Playlist Uri as provided by Spotify total_tracks: Total number of tracks in the playlist.
track_artist1
| track_id | artist_id |
Track-Artist association table
track_playlist1
| track_id | playlist_id |
Track-Playlist association table
The data is in the form of a SQL dump. The download size is about 10 GB, and the database populated from it comes out to about 35GB.
spotifydbdumpschemashare.sql contains the schema for the database (for reference): spotifydbdumpshare.sql is the actual data dump.
Setup steps: 1. Create database 2. mysql -u -p < spotifydbdumpshare.sql
The description of this dataset can be found in the following paper:
Papreja P., Venkateswara H., Panchanathan S. (2020) Representation, Exploration and Recommendation of Playlists. In: Cellier P., Driessens K. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Communications in Computer and Information Science, vol 1168. Springer, Cham
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Deteccion de pelotas en tiempo real para cualquier cosa
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context
Dataset contains a comprehensive list of the most famous songs and most streamed songs as listed on Spotify.
It provides insights into each song's
The dataset includes information such as track name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Sportify Dataset7 is a dataset for object detection tasks - it contains Player Ball Fastball 9kNN J1Wq CwGE JesS annotations for 4,186 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
On October 22, 2024, 'APT.' by ROSÉ and Bruno Mars was the most-streamed track on Spotify with 14.6 million streams worldwide, followed by 'Die With A Smile" by Lady Gaga and Bruno Mars, reaching over 11 million Spotify streams on Spotify that day. Billie Eilish's 'BIRDS OF A FEATHER' came third with just over 7.6 million streams. How do music artists get so many streams on Spotify? Firstly, Spotify is one of the most successful and popular music streaming services in the United States, and as of the first half of 2018 had the biggest share of music streaming subscribers in the world. With Spotify’s vast audience, featuring on the platform is a good start for emerging and popular artists hoping to make an impact. Secondly, there is no exact science to ‘going viral’. From the famous egg photo on Instagram posted in early 2019 to wildly successful music video ‘Gangnam Style’ released back in 2012, viral content comes in all shapes and sizes. Purposeful viral marketing is one way in which something could go viral, and is one of the reasons why some songs have so many streams in a short space of time. This type of marketing involves a tactical approach and pre-planning in an attempt to push the content into the public eye and encourage it to spread as quickly as possible. However, many artists who go viral do not expect to. Accessible, catchy content created by an already popular artist is already poised to do well, i.e. the latest song or album from U.S. singer Drake. This is an example of incidental viral marketing, when content spreads by itself partially as a result of an established and engaged audience. Indeed, Spotify’s most-streamed tracks generally originate from a well-known figure with a large following. But for smaller or entirely unknown content creators, going viral or experiencing their 15 minutes of fame can simply be a case of posting the right thing at the right time.
💁♀️Please take a moment to carefully read through this description and metadata to better understand the dataset and its nuances before proceeding to the Suggestions and Discussions section.
This dataset compiles the tracks from Spotify's official "Top Tracks of 2023" playlist, showcasing the most popular and influential music of the year according to Spotify's streaming data. It represents a wide range array of genres, artists, and musical styles that have defined the musical landscapes of 2023. Each track in the dataset is detailed with a variety of features, popularity, and metadata. This dataset serves as an excellent resource for music enthusiasts, data analysts, and researchers aiming to explore music trends or develop music recommendation systems based on empirical data.
The data was obtained directly from the Spotify Web API, specifically from the "Top Tracks of 2023" official playlist curated by Spotify. The Spotify API provides detailed information about tracks, artists, and albums through various endpoints.
To process and structure the data, I developed Python scripts using data science libraries such as pandas
for data manipulation and spotipy
for API interactions specifically for Spotify data retrieval.
I encourage users who discover new insights, propose dataset enhancements, or craft analytics that illuminate aspects of the dataset's focus to share their findings with the community. - Kaggle Notebooks: To facilitate sharing and collaboration, users are encouraged to create and share their analyses through Kaggle notebooks. For ease of use, start your notebook by clicking "New Notebook" atop this dataset’s page on K...
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
This dataset, "Spotify's Long Hits (2014-2024) 🎶," offers a unique collection of over 800 tracks, each standing out for its extended playtime, marking the years from 2014 to 2024. It serves as a unique lens through which the evolution of musical duration and listener preferences can be observed over a significant period. Each track in this dataset not only surpasses the conventional lengths but also encapsulates the essence of its time, making it a valuable resource for in-depth musical analysis.
Data Science Applications: The dataset's structure lends itself to various analytical pursuits within the data science realm. Researchers and enthusiasts can delve into trend analysis to uncover shifts in musical durations over the years, perform genre-based studies to explore the relationship between genre and track length, or even train machine learning models to predict track popularity based on various features. However, make sure to use the dataset only for educational purposes as per Spotify guidelines.
Column Descriptors: - ID: The unique identifier for each track on Spotify, facilitating direct access to the track. - Name: The title of the track, revealing its identity. - Duration (Minutes): The length of each track, provided in minutes, highlighting the extended nature of these compositions. - Artists: The names of the artists involved, offering insights into the collaborative landscape of each piece.
Ethically Mined Data: This dataset has been compiled with strict adherence to ethical data mining practices, utilizing Spotify's public API in full compliance with their guidelines. It represents a harmonious blend of technology and creativity, showcasing the vast musical archive that Spotify offers.
Gratitude is extended to Spotify for the data provided and the usage of their logo in the dataset thumbnail, which adds a recognizable visual cue to this academic resource. This dataset stands as a testament to the power of music and data combined, inviting exploration into the depths of musical analysis.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains information about songs available on Spotify, including various attributes such as title, artist, genre, release year, beats per minute, energy, danceability, loudness, liveness, valence, length, acousticness, speechiness, and popularity. The data was collected from Spotify's API and curated for analysis and research purposes and also some data is fetched from the previous data set available on kaggle data set.
Features:
title: The title of the song. artist: The artist(s) of the song. top genre: The primary genre of the song. year: The release year of the song.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Sportify Dataset4 is a dataset for object detection tasks - it contains Player Ball Fastball 9kNN annotations for 1,845 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This is a dataset consisting of features for tracks fetched using Spotify's Web API. The tracks are labeled '1' or '0' ('Hit' or 'Flop') depending on some criterias of the author. This dataset can be used to make a classification model that predicts whethere a track would be a 'Hit' or not. (Note: The author does not objectively considers a track inferior, bad or a failure if its labeled 'Flop'. 'Flop' here merely implies that it is a track that probably could not be considered popular in the mainstream.) Here's an implementation of this idea in the form of a website that I made. {http://www.hitpredictor.in/}
https://choosealicense.com/licenses/bsd/https://choosealicense.com/licenses/bsd/
Content
This is a dataset of Spotify tracks over a range of 125 different genres. Each track has some audio features associated with it. The data is in CSV format which is tabular and can be loaded quickly.
Usage
The dataset can be used for:
Building a Recommendation System based on some user input or preference Classification purposes based on audio features and available genres Any other application that you can think of. Feel free to discuss!
Column… See the full description on the dataset page: https://huggingface.co/datasets/maharshipandya/spotify-tracks-dataset.