100+ datasets found
  1. d

    BUTTER - Empirical Deep Learning Dataset

    • catalog.data.gov
    • data.openei.org
    • +2more
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Renewable Energy Laboratory (2024). BUTTER - Empirical Deep Learning Dataset [Dataset]. https://catalog.data.gov/dataset/butter-empirical-deep-learning-dataset
    Explore at:
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    National Renewable Energy Laboratory
    Description

    The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four learning rates, six minibatch sizes, four levels of label noise, and fourteen levels of L1 and L2 regularization each. Multiple repetitions (typically 30, sometimes 10) of each combination of hyperparameters were preformed, and statistics including training and test loss (using a 80% / 20% shuffled train-test split) are recorded at the end of each training epoch. In total, this dataset covers 178 thousand distinct hyperparameter settings ("experiments"), 3.55 million individual training runs (an average of 20 repetitions of each experiments), and a total of 13.3 billion training epochs (three thousand epochs were covered by most runs). Accumulating this dataset consumed 5,448.4 CPU core-years, 17.8 GPU-years, and 111.2 node-years.

  2. Machine Learning Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jun 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Machine Learning Dataset [Dataset]. https://brightdata.com/products/datasets/machine-learning
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jun 19, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.

  3. m

    AI & ML Training Data | Artificial Intelligence (AI) | Machine Learning (ML)...

    • apiscrapy.mydatastorefront.com
    Updated Nov 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2024). AI & ML Training Data | Artificial Intelligence (AI) | Machine Learning (ML) Datasets | Deep Learning Datasets | Easy to Integrate | Free Sample [Dataset]. https://apiscrapy.mydatastorefront.com/products/ai-ml-training-data-ai-learning-dataset-ml-learning-dataset-apiscrapy
    Explore at:
    Dataset updated
    Nov 19, 2024
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Belgium, Åland Islands, Switzerland, Monaco, Japan, United Kingdom, Romania, Slovakia, Canada, France
    Description

    APISCRAPY's AI & ML training data is meticulously curated and labelled to ensure the best quality. Our training data comes from a variety of areas, including healthcare and banking, as well as e-commerce and natural language processing.

  4. Datasets

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bastian Eichenberger; YinXiu Zhan (2023). Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.12958037.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Bastian Eichenberger; YinXiu Zhan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The benchmarking datasets used for deepBlink. The npz files contain train/valid/test splits inside and can be used directly. The files belong to the following challenges / classes:- ISBI Particle tracking challenge: microtubule, vesicle, receptor- Custom synthetic (based on http://smal.ws): particle- Custom fixed cell: smfish- Custom live cell: suntagThe csv files are to determine which image in the test splits correspond to which original image, SNR, and density.

  5. q

    Image dataset for detecting sugarcane white leaf disease using Deep learning...

    • researchdatafinder.qut.edu.au
    • researchdata.edu.au
    Updated Dec 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mr Narmilan Amarasingam (2022). Image dataset for detecting sugarcane white leaf disease using Deep learning [Dataset]. https://researchdatafinder.qut.edu.au/display/n21355
    Explore at:
    Dataset updated
    Dec 8, 2022
    Dataset provided by
    Queensland University of Technology (QUT)
    Authors
    Mr Narmilan Amarasingam
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    This work applied remote sensing techniques based on unmanned aerial vehicles (UAVs) and deep learning (DL) to detect WLD in sugarcane fields at the Gal-Oya Plantation, Sri Lanka. The established methodology to detect WLD consists of UAV red, green, and blue (RGB) image acquisition, the pre-processing of the dataset, labelling, DL model tuning, and prediction.

    Acknowledgements:

    Narmilan Amarasingam conducted the UAV flight mission, and analysis and prepared the manuscript for final submission as a corresponding author.
    Felipe Gonzalez, Kevin Powell, and Juan Sandino provided overall supervision and contributed to the writing and editing.
    Surantha provided the technical guidance to conduct the UAV flight mission and research design and provided feedback on the draft manuscript.
    
  6. m

    LOCBEEF: Beef Quality Image dataset for Deep Learning Models

    • data.mendeley.com
    Updated Nov 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tri Mulya Dharma (2022). LOCBEEF: Beef Quality Image dataset for Deep Learning Models [Dataset]. http://doi.org/10.17632/nhs6mjg6yy.1
    Explore at:
    Dataset updated
    Nov 30, 2022
    Authors
    Tri Mulya Dharma
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The LOCBEEF dataset contains 3268 images of local Aceh beef collected from 07:00 a.m - 22:00 p.m, more information about the clock is shown in Fig. The dataset contains two categories of directories, namely train, and test. Furthermore, each subdirectory consists of fresh and rotten. An example of the image can be seen in Figs. 2 and 3. The directory structure for the data is shown in Fig. 1. The image directory for train contains 2228 images each subdirectory contains 1114 images, and the test directory contains 980 images for each subdirectory containing 490 images. For images have a resolution of 176 x 144 pixel, 320 x 240 pixel, 640 x 480 pixel, 720 x 480 pixel, 720 x 720 pixel, 1280 x 720 pixel, 1920 x 1080 pixel, 2560 x 1920 pixel, 3120 x 3120 pixel, 3264 x 2248 pixel, and 4160 x 3120 pixel.

    The classification of LOCBEEF datasets has been carried out using the deep learning method of Convolutional Neural Networks with an image composition of 70% training data and 30% test data. Images with the mentioned dimensions are included in the LOCBEEF dataset to apply to the Resnet50.

  7. R

    Ratinanet Deep Learning Dataset

    • universe.roboflow.com
    zip
    Updated Nov 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minor Project (2023). Ratinanet Deep Learning Dataset [Dataset]. https://universe.roboflow.com/minor-project-laaov/ratinanet-deep-learning
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 26, 2023
    Dataset authored and provided by
    Minor Project
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Breast Cancer Bounding Boxes
    Description

    Ratinanet Deep Learning

    ## Overview
    
    Ratinanet Deep Learning is a dataset for object detection tasks - it contains Breast Cancer annotations for 3,180 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  8. Deep Learning Market Analysis North America, Europe, APAC, South America,...

    • technavio.com
    pdf
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Deep Learning Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, China, UK, Canada, Germany - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/deep-learning-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 17, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2024 - 2028
    Area covered
    United States
    Description

    Snapshot img

    Deep Learning Market Size 2024-2028

    The deep learning market size is forecast to increase by USD 10.85 billion at a CAGR of 26.06% between 2023 and 2028.

    Deep learning technology is revolutionizing various industries, including healthcare. In the healthcare sector, deep learning is being extensively used for the diagnosis and treatment of musculoskeletal and inflammatory disorders. The market for deep learning services is experiencing significant growth due to the increasing availability of high-resolution medical images, electronic health records, and big data. Medical professionals are leveraging deep learning technologies for disease indications such as failure-to-success ratio, image interpretation, and biomarker identification solutions. Moreover, with the proliferation of data from various sources such as social networks, smartphones, and IoT devices, there is a growing need for advanced analytics techniques to make sense of this data. Companies In the market are collaborating to offer comprehensive information services and digital analytical solutions. However, the lack of technical expertise among medical professionals poses a challenge to the widespread adoption of deep learning technologies. The market is witnessing an influx of startups, which is intensifying the competition. Deep learning services are being integrated with compatible devices for image processing and prognosis. Molecular data analysis is another area where deep learning technologies are making a significant impact.
    

    What will be the Size of the Deep Learning Market During the Forecast Period?

    Request Free Sample

    A subset of machine learning and artificial intelligence (AI), is a computational method inspired by the structure and function of the human brain. This technology utilizes neural networks, a type of machine learning model, to recognize patterns and learn from data. In the US market, deep learning is gaining significant traction due to its ability to process large amounts of data and extract meaningful insights. The market In the US is driven by several factors. One of the primary factors is the increasing availability of big data.
    Moreover, with the proliferation of data from various sources such as social networks, smartphones, and IoT devices, there is a growing need for advanced analytics techniques to make sense of this data. Deep learning algorithms, with their ability to learn from vast amounts of data, are well-positioned to address this need. Another factor fueling the growth of the market In the US is the increasing adoption of cloud-based technology. Cloud-based solutions offer several advantages, including scalability, flexibility, and cost savings. These solutions enable organizations to process large datasets and train complex models without the need for expensive hardware.
    

    How is this Industry segmented and which is the largest segment?

    The industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    Application
    
      Image recognition
      Voice recognition
      Video surveillance and diagnostics
      Data mining
    
    
    Type
    
      Software
      Services
      Hardware
    
    
    Geography
    
      North America
    
        Canada
        US
    
    
      Europe
    
        Germany
        UK
    
    
      APAC
    
        China
    
    
      South America
    
    
    
      Middle East and Africa
    

    By Application Insights

    The image recognition segment is estimated to witness significant growth during the forecast period.
    

    In the realm of artificial intelligence (AI), image recognition holds significant value, particularly in sectors such as banking and finance (BFSI). This technology's ability to accurately identify and categorize images is invaluable, as extensive image repositories In these industries cannot be easily forged. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. For instance, social media platforms like Facebook employ this technology to correctly identify and assign images to the right user account with an impressive accuracy rate of approximately 98%. Moreover, AI image recognition plays a crucial role in eliminating fraudulent social media accounts.

    Get a glance at the report of share of various segments Request Free Sample

    The image recognition segment was valued at USD 1.05 billion in 2018 and showed a gradual increase during the forecast period.

    Regional Analysis

    North America is estimated to contribute 36% to the growth of the global market during the forecast period.
    

    Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    For more insights on the market share of various regions, Request Free S

  9. US Deep Learning Market Analysis, Size, and Forecast 2025-2029

    • technavio.com
    pdf
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). US Deep Learning Market Analysis, Size, and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-deep-learning-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    US Deep Learning Market Size 2025-2029

    The deep learning market size in US is forecast to increase by USD 5.02 billion at a CAGR of 30.1% between 2024 and 2029.

    The deep learning market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) in various industries for advanced solutioning. This trend is fueled by the availability of vast amounts of data, which is a key requirement for deep learning algorithms to function effectively. Industry-specific solutions are gaining traction, as businesses seek to leverage deep learning for specific use cases such as image and speech recognition, fraud detection, and predictive maintenance. Alongside, intuitive data visualization tools are simplifying complex neural network outputs, helping stakeholders understand and validate insights. 
    
    
    However, challenges remain, including the need for powerful computing resources, data privacy concerns, and the high cost of implementing and maintaining deep learning systems. Despite these hurdles, the market's potential for innovation and disruption is immense, making it an exciting space for businesses to explore further. Semi-supervised learning, data labeling, and data cleaning facilitate efficient training of deep learning models. Cloud analytics is another significant trend, as companies seek to leverage cloud computing for cost savings and scalability. 
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    Deep learning, a subset of machine learning, continues to shape industries by enabling advanced applications such as image and speech recognition, text generation, and pattern recognition. Reinforcement learning, a type of deep learning, gains traction, with deep reinforcement learning leading the charge. Anomaly detection, a crucial application of unsupervised learning, safeguards systems against security vulnerabilities. Ethical implications and fairness considerations are increasingly important in deep learning, with emphasis on explainable AI and model interpretability. Graph neural networks and attention mechanisms enhance data preprocessing for sequential data modeling and object detection. Time series forecasting and dataset creation further expand deep learning's reach, while privacy preservation and bias mitigation ensure responsible use.

    In summary, deep learning's market dynamics reflect a constant pursuit of innovation, efficiency, and ethical considerations. The Deep Learning Market in the US is flourishing as organizations embrace intelligent systems powered by supervised learning and emerging self-supervised learning techniques. These methods refine predictive capabilities and reduce reliance on labeled data, boosting scalability. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. Sophisticated feature extraction algorithms now enable models to isolate patterns with high precision, particularly in applications such as image classification for healthcare, security, and retail.

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      Image recognition
      Voice recognition
      Video surveillance and diagnostics
      Data mining
    
    
    Type
    
      Software
      Services
      Hardware
    
    
    End-user
    
      Security
      Automotive
      Healthcare
      Retail and commerce
      Others
    
    
    Geography
    
      North America
    
        US
    

    By Application Insights

    The Image recognition segment is estimated to witness significant growth during the forecast period. In the realm of artificial intelligence (AI) and machine learning, image recognition, a subset of computer vision, is gaining significant traction. This technology utilizes neural networks, deep learning models, and various machine learning algorithms to decipher visual data from images and videos. Image recognition is instrumental in numerous applications, including visual search, product recommendations, and inventory management. Consumers can take photographs of products to discover similar items, enhancing the online shopping experience. In the automotive sector, image recognition is indispensable for advanced driver assistance systems (ADAS) and autonomous vehicles, enabling the identification of pedestrians, other vehicles, road signs, and lane markings.

    Furthermore, image recognition plays a pivotal role in augmented reality (AR) and virtual reality (VR) applications, where it tracks physical objects and overlays digital content onto real-world scenarios. The model training process involves the backpropagation algorithm, which calculates the loss fu

  10. g

    Geometric Shapes Dataset for Deep Learning

    • gts.ai
    json
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2025). Geometric Shapes Dataset for Deep Learning [Dataset]. https://gts.ai/dataset-download/geometric-shapes-dataset-for-deep-learning/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The Geometric Shapes Dataset for Deep Learning includes 20,000 high-quality images of circles, squares, triangles, rectangles, ellipses, octagons, parallelograms, pentagons, and rhombuses in multiple colors. It is designed for AI, ML, and computer vision applications such as shape recognition and object detection.

  11. i

    A Dataset with Adversarial Attacks on Deep Learning in Wireless Modulation...

    • ieee-dataport.org
    Updated Sep 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Antonios Argyriou (2023). A Dataset with Adversarial Attacks on Deep Learning in Wireless Modulation Classification [Dataset]. https://ieee-dataport.org/documents/dataset-adversarial-attacks-deep-learning-wireless-modulation-classification
    Explore at:
    Dataset updated
    Sep 23, 2023
    Authors
    Antonios Argyriou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains adversarial attacks on Deep Learning (DL) when it is employed for the classification of wireless modulated communication signals. The attack is executed with an obfuscating waveform that is embedded in the transmitted signal in such a way that prevents the extraction of clean data for training from a wireless eavesdropper. At the same time it allows a legitimate receiver (LRx) to demodulate the data.

  12. Uma Cv Deep Learning Dataset

    • universe.roboflow.com
    zip
    Updated Oct 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    abde.poonawala@gmail.com (2021). Uma Cv Deep Learning Dataset [Dataset]. https://universe.roboflow.com/abde-poonawala-gmail-com/uma-cv-deep-learning
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 24, 2021
    Dataset provided by
    Gmailhttp://gmail.com/
    Authors
    abde.poonawala@gmail.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Buoys Bounding Boxes
    Description

    UMA CV Deep Learning

    ## Overview
    
    UMA CV Deep Learning is a dataset for object detection tasks - it contains Buoys annotations for 748 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  13. f

    Data from: Deep learning neural network derivation and testing to...

    • tandf.figshare.com
    • datasetcatalog.nlm.nih.gov
    png
    Updated Aug 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Omid Mehrpour; Christopher Hoyte; Abdullah Al Masud; Ashis Biswas; Jonathan Schimmel; Samaneh Nakhaee; Mohammad Sadegh Nasr; Heather Delva-Clark; Foster Goss (2023). Deep learning neural network derivation and testing to distinguish acute poisonings [Dataset]. http://doi.org/10.6084/m9.figshare.23694504.v1
    Explore at:
    pngAvailable download formats
    Dataset updated
    Aug 8, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Omid Mehrpour; Christopher Hoyte; Abdullah Al Masud; Ashis Biswas; Jonathan Schimmel; Samaneh Nakhaee; Mohammad Sadegh Nasr; Heather Delva-Clark; Foster Goss
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Acute poisoning is a significant global health burden, and the causative agent is often unclear. The primary aim of this pilot study was to develop a deep learning algorithm that predicts the most probable agent a poisoned patient was exposed to from a pre-specified list of drugs. Data were queried from the National Poison Data System (NPDS) from 2014 through 2018 for eight single-agent poisonings (acetaminophen, diphenhydramine, aspirin, calcium channel blockers, sulfonylureas, benzodiazepines, bupropion, and lithium). Two Deep Neural Networks (PyTorch and Keras) designed for multi-class classification tasks were applied. There were 201,031 single-agent poisonings included in the analysis. For distinguishing among selected poisonings, PyTorch model had specificity of 97%, accuracy of 83%, precision of 83%, recall of 83%, and a F1-score of 82%. Keras had specificity of 98%, accuracy of 83%, precision of 84%, recall of 83%, and a F1-score of 83%. The best performance was achieved in the diagnosis of single-agent poisoning in diagnosing poisoning by lithium, sulfonylureas, diphenhydramine, calcium channel blockers, then acetaminophen, in PyTorch (F1-score = 99%, 94%, 85%, 83%, and 82%, respectively) and Keras (F1-score = 99%, 94%, 86%, 82%, and 82%, respectively). Deep neural networks can potentially help in distinguishing the causative agent of acute poisoning. This study used a small list of drugs, with polysubstance ingestions excluded.Reproducible source code and results can be obtained at https://github.com/ashiskb/npds-workspace.git.

  14. 2023 TREC Deep Learning Track Dataset

    • catalog.data.gov
    • data.nist.gov
    • +1more
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Standards and Technology (2025). 2023 TREC Deep Learning Track Dataset [Dataset]. https://catalog.data.gov/dataset/2023-trec-deep-learning-track-dataset
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Description

    The Deep Learning track focuses on IR tasks where a large training set is available, allowing us to compare a variety of retrieval approaches including deep neural networks and strong non-neural approaches, to see what works best in a large-data regime.

  15. D

    SYNERGY - Open machine learning dataset on study selection in systematic...

    • dataverse.nl
    csv, json, txt, zip
    Updated Apr 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan De Bruin; Jonathan De Bruin; Yongchao Ma; Yongchao Ma; Gerbrich Ferdinands; Gerbrich Ferdinands; Jelle Teijema; Jelle Teijema; Rens Van de Schoot; Rens Van de Schoot (2023). SYNERGY - Open machine learning dataset on study selection in systematic reviews [Dataset]. http://doi.org/10.34894/HE6NAQ
    Explore at:
    txt(212), json(702), zip(16028323), json(19426), txt(263), zip(3560967), txt(305), json(470), txt(279), zip(2355371), json(23201), csv(460956), txt(200), json(685), json(546), csv(63996), zip(2989015), zip(5749455), txt(331), txt(315), json(691), json(23775), csv(672721), json(468), txt(415), json(22778), csv(31919), csv(746832), json(18392), zip(62992826), csv(234822), txt(283), zip(34788857), json(475), txt(242), json(533), csv(42227), json(24548), zip(738232), json(22477), json(25491), zip(11463283), json(17741), csv(490660), json(19662), json(578), csv(19786), zip(14708207), zip(24619707), zip(2404439), json(713), json(27224), json(679), json(26426), txt(185), json(906), zip(18534723), json(23550), txt(266), txt(317), zip(6019723), json(33943), txt(436), csv(388378), json(469), zip(2106498), txt(320), csv(451336), txt(338), zip(19428163), json(14326), json(31652), txt(299), csv(96153), txt(220), csv(114789), json(15452), csv(5372708), json(908), csv(317928), csv(150923), json(465), csv(535584), json(26090), zip(8164831), json(19633), txt(316), json(23494), csv(133950), json(18638), csv(3944082), json(15345), json(473), zip(4411063), zip(10396095), zip(835096), txt(255), json(699), csv(654705), txt(294), csv(989865), zip(1028035), txt(322), zip(15085090), txt(237), txt(310), json(756), json(30628), json(19490), json(25908), txt(401), json(701), zip(5543909), json(29397), zip(14007470), json(30058), zip(58869042), csv(852937), json(35711), csv(298011), csv(187163), txt(258), zip(3526740), json(568), json(21552), zip(66466788), csv(215250), json(577), csv(103010), txt(306), zip(11840006)Available download formats
    Dataset updated
    Apr 24, 2023
    Dataset provided by
    DataverseNL
    Authors
    Jonathan De Bruin; Jonathan De Bruin; Yongchao Ma; Yongchao Ma; Gerbrich Ferdinands; Gerbrich Ferdinands; Jelle Teijema; Jelle Teijema; Rens Van de Schoot; Rens Van de Schoot
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    SYNERGY is a free and open dataset on study selection in systematic reviews, comprising 169,288 academic works from 26 systematic reviews. Only 2,834 (1.67%) of the academic works in the binary classified dataset are included in the systematic reviews. This makes the SYNERGY dataset a unique dataset for the development of information retrieval algorithms, especially for sparse labels. Due to the many available variables available per record (i.e. titles, abstracts, authors, references, topics), this dataset is useful for researchers in NLP, machine learning, network analysis, and more. In total, the dataset contains 82,668,134 trainable data points. The easiest way to get the SYNERGY dataset is via the synergy-dataset Python package. See https://github.com/asreview/synergy-dataset for all information.

  16. Dollar street 10 - 64x64x3

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sven van der burg; Sven van der burg (2025). Dollar street 10 - 64x64x3 [Dataset]. http://doi.org/10.5281/zenodo.10970014
    Explore at:
    binAvailable download formats
    Dataset updated
    May 6, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sven van der burg; Sven van der burg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The MLCommons Dollar Street Dataset is a collection of images of everyday household items from homes around the world that visually captures socioeconomic diversity of traditionally underrepresented populations. It consists of public domain data, licensed for academic, commercial and non-commercial usage, under CC-BY and CC-BY-SA 4.0. The dataset was developed because similar datasets lack socioeconomic metadata and are not representative of global diversity.

    This is a subset of the original dataset that can be used for multiclass classification with 10 categories. It is designed to be used in teaching, similar to the widely used, but unlicensed CIFAR-10 dataset.

    These are the preprocessing steps that were performed:

    1. Only take examples with one imagenet_synonym label
    2. Use only examples with the 10 most frequently occuring labels
    3. Downscale images to 64 x 64 pixels
    4. Split data in train and test
    5. Store as numpy array

    This is the label mapping:

    Categorylabel
    day bed0
    dishrag1
    plate2
    running shoe3
    soap dispenser4
    street sign5
    table lamp6
    tile roof7
    toilet seat8
    washing machine9

    Checkout https://github.com/carpentries-lab/deep-learning-intro/blob/main/instructors/prepare-dollar-street-data.ipynb" target="_blank" rel="noopener">this notebook to see how the subset was created.

    The original dataset was downloaded from https://www.kaggle.com/datasets/mlcommons/the-dollar-street-dataset. See https://mlcommons.org/datasets/dollar-street/ for more information.

  17. BUTTER-E - Energy Consumption Data for the BUTTER Empirical Deep Learning...

    • data.openei.org
    • datasets.ai
    • +2more
    archive, code, data +1
    Updated Dec 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charles Tripp; Jordan Perr-Sauer; Erik Bensen; Jamil Gafur; Ambarish Nag; Avi Purkayastha; Charles Tripp; Jordan Perr-Sauer; Erik Bensen; Jamil Gafur; Ambarish Nag; Avi Purkayastha (2022). BUTTER-E - Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset [Dataset]. http://doi.org/10.25984/2329316
    Explore at:
    code, data, archive, websiteAvailable download formats
    Dataset updated
    Dec 30, 2022
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Open Energy Data Initiative (OEDI)
    National Renewable Energy Laboratory
    Authors
    Charles Tripp; Jordan Perr-Sauer; Erik Bensen; Jamil Gafur; Ambarish Nag; Avi Purkayastha; Charles Tripp; Jordan Perr-Sauer; Erik Bensen; Jamil Gafur; Ambarish Nag; Avi Purkayastha
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The BUTTER-E - Energy Consumption Data for the BUTTER Empirical Deep Learning Dataset adds node-level energy consumption data from watt-meters to the primary sweep of the BUTTER - Empirical Deep Learning Dataset. This dataset contains energy consumption and performance data from 63,527 individual experimental runs spanning 30,582 distinct configurations: 13 datasets, 20 sizes (number of trainable parameters), 8 network "shapes", and 14 depths on both CPU and GPU hardware collected using node-level watt-meters. This dataset reveals the complex relationship between dataset size, network structure, and energy use, and highlights the impact of cache effects.

    BUTTER-E is intended to be joined with the BUTTER dataset (see "BUTTER - Empirical Deep Learning Dataset on OEDI" resource below) which characterizes the performance of 483k distinct fully connected neural networks but does not include energy measurements.

  18. CSIRO Sentinel-1 SAR image dataset of oil- and non-oil features for machine...

    • data.csiro.au
    • researchdata.edu.au
    Updated Dec 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Blondeau-Patissier; Thomas Schroeder; Foivos Diakogiannis; Zhibin Li (2022). CSIRO Sentinel-1 SAR image dataset of oil- and non-oil features for machine learning ( Deep Learning ) [Dataset]. http://doi.org/10.25919/4v55-dn16
    Explore at:
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    David Blondeau-Patissier; Thomas Schroeder; Foivos Diakogiannis; Zhibin Li
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2015 - Aug 31, 2022
    Area covered
    Dataset funded by
    ESA
    CSIROhttp://www.csiro.au/
    Description

    What this collection is: A curated, binary-classified image dataset of grayscale (1 band) 400 x 400-pixel size, or image chips, in a JPEG format extracted from processed Sentinel-1 Synthetic Aperture Radar (SAR) satellite scenes acquired over various regions of the world, and featuring clear open ocean chips, look-alikes (wind or biogenic features) and oil slick chips.

    This binary dataset contains chips labelled as: - "0" for chips not containing any oil features (look-alikes or clean seas)
    - "1" for those containing oil features.

    This binary dataset is imbalanced, and biased towards "0" labelled chips (i.e., no oil features), which correspond to 66% of the dataset. Chips containing oil features, labelled "1", correspond to 34% of the dataset.

    Why: This dataset can be used for training, validation and/or testing of machine learning, including deep learning, algorithms for the detection of oil features in SAR imagery. Directly applicable for algorithm development for the European Space Agency Sentinel-1 SAR mission (https://sentinel.esa.int/web/sentinel/missions/sentinel-1 ), it may be suitable for the development of detection algorithms for other SAR satellite sensors.

    Overview of this dataset: Total number of chips (both classes) is N=5,630 Class 0 1 Total 3,725 1,905

    Further information and description is found in the ReadMe file provided (ReadMe_Sentinel1_SAR_OilNoOil_20221215.txt)

  19. f

    Table 1_A systematic review of Machine Learning and Deep Learning approaches...

    • frontiersin.figshare.com
    xlsx
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    José Luis Uc Castillo; Ana Elizabeth Marín Celestino; Diego Armando Martínez Cruz; José Tuxpan Vargas; José Alfredo Ramos Leal; Janete Morán Ramírez (2025). Table 1_A systematic review of Machine Learning and Deep Learning approaches in Mexico: challenges and opportunities.xlsx [Dataset]. http://doi.org/10.3389/frai.2024.1479855.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset provided by
    Frontiers
    Authors
    José Luis Uc Castillo; Ana Elizabeth Marín Celestino; Diego Armando Martínez Cruz; José Tuxpan Vargas; José Alfredo Ramos Leal; Janete Morán Ramírez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This systematic review provides a state-of-art of Artificial Intelligence (AI) models such as Machine Learning (ML) and Deep Learning (DL) development and its applications in Mexico in diverse fields. These models are recognized as powerful tools in many fields due to their capability to carry out several tasks such as forecasting, image classification, recognition, natural language processing, machine translation, etc. This review article aimed to provide comprehensive information on the Machine Learning and Deep Learning algorithms applied in Mexico. A total of 120 original research papers were included and details such as trends in publication, spatial location, institutions, publishing issues, subject areas, algorithms applied, and performance metrics were discussed. Furthermore, future directions and opportunities are presented. A total of 15 subject areas were identified, where Social Sciences and Medicine were the main application areas. It observed that Artificial Neural Networks (ANN) models were preferred, probably due to their capability to learn and model non-linear and complex relationships in addition to other popular models such as Random Forest (RF) and Support Vector Machines (SVM). It identified that the selection and application of the algorithms rely on the study objective and the data patterns. Regarding the performance metrics applied, accuracy and recall were the most employed. This paper could assist the readers in understanding the several Machine Learning and Deep Learning techniques used and their subject area of application in the Artificial Intelligence field in the country. Moreover, the study could provide significant knowledge in the development and implementation of a national AI strategy, according to country needs.

  20. D

    Deep Learning in Security Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Deep Learning in Security Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-deep-learning-in-security-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Deep Learning in Security Market Outlook



    The global Deep Learning in Security market size is projected to grow from USD 1.3 billion in 2023 to USD 6.4 billion by 2032, at a Compound Annual Growth Rate (CAGR) of 19.6% during the forecast period. The rapid increase in cyber threats and the growing sophistication of attacks are significant growth factors driving this market. The necessity to secure data in a world that is increasingly digital is compelling organizations to adopt deep learning technologies to enhance their security systems, ensuring robust protection against potential breaches.



    The increasing digitization across various sectors such as BFSI, healthcare, and IT and telecommunications is contributing significantly to the market's growth. As organizations move towards digital transformation, the complexity and volume of data increase, necessitating advanced security measures. Deep learning, with its ability to analyze vast amounts of data and identify patterns, offers an effective solution for detecting and mitigating potential security threats in real-time. Moreover, the growing adoption of Internet of Things (IoT) devices has expanded the attack surface, driving the need for more sophisticated security solutions powered by deep learning.



    Another critical growth factor is the rising awareness regarding the limitations of traditional security measures. Conventional security methods, which are primarily rule-based, struggle to keep up with the evolving nature of cyber threats. Deep learning security systems, on the other hand, can learn and adapt to new attack vectors, making them more efficient in identifying and preventing sophisticated cyber-attacks. Additionally, the increasing investments in artificial intelligence (AI) and machine learning (ML) by both public and private sectors are further propelling the adoption of deep learning in security.



    The regulatory landscape also plays a crucial role in the growth of the deep learning in security market. Governments worldwide are implementing stringent data protection and cybersecurity regulations, pushing organizations to adopt advanced security technologies. Compliance with such regulations necessitates the deployment of robust security measures, including those powered by deep learning. The market's growth is also supported by technological advancements in AI and ML, making deep learning models more accessible and efficient.



    Artificial Intelligence in Security is becoming an integral part of modern cybersecurity strategies. As cyber threats become more sophisticated, AI technologies are being leveraged to enhance security measures, providing real-time threat detection and response. AI's ability to analyze vast amounts of data and identify patterns allows it to detect anomalies that might indicate a security breach. This capability is crucial in an era where cyber-attacks are not only more frequent but also more complex. By integrating AI into security systems, organizations can proactively address potential threats, reducing the risk of data breaches and ensuring the safety of their digital assets. The continuous advancements in AI technology are making security solutions more robust and efficient, enabling organizations to stay ahead of emerging threats.



    Regionally, North America is expected to dominate the deep learning in security market, owing to the presence of major technology companies and high adoption rates of advanced security solutions. Asia-Pacific is anticipated to witness significant growth, driven by the increasing digitization and rising cyber threats in the region. Europe also presents substantial opportunities due to stringent data protection regulations such as GDPR, which necessitate advanced security measures.



    Component Analysis



    The Deep Learning in Security market can be segmented by component into Software, Hardware, and Services. The software segment is expected to hold the largest market share due to its vital role in deploying deep learning models for security purposes. Software solutions, encompassing algorithms, platforms, and security management systems, are indispensable for analyzing data and identifying threats. Their adaptability and scalability make them preferable for organizations of all sizes, contributing significantly to market growth. Moreover, the continuous advancements in algorithms and the development of new software tools are enhancing the efficiency and effectiveness of security solutions.

    <b

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Renewable Energy Laboratory (2024). BUTTER - Empirical Deep Learning Dataset [Dataset]. https://catalog.data.gov/dataset/butter-empirical-deep-learning-dataset

BUTTER - Empirical Deep Learning Dataset

Explore at:
8 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 3, 2024
Dataset provided by
National Renewable Energy Laboratory
Description

The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four learning rates, six minibatch sizes, four levels of label noise, and fourteen levels of L1 and L2 regularization each. Multiple repetitions (typically 30, sometimes 10) of each combination of hyperparameters were preformed, and statistics including training and test loss (using a 80% / 20% shuffled train-test split) are recorded at the end of each training epoch. In total, this dataset covers 178 thousand distinct hyperparameter settings ("experiments"), 3.55 million individual training runs (an average of 20 repetitions of each experiments), and a total of 13.3 billion training epochs (three thousand epochs were covered by most runs). Accumulating this dataset consumed 5,448.4 CPU core-years, 17.8 GPU-years, and 111.2 node-years.

Search
Clear search
Close search
Google apps
Main menu