Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
SYNERGY is a free and open dataset on study selection in systematic reviews, comprising 169,288 academic works from 26 systematic reviews. Only 2,834 (1.67%) of the academic works in the binary classified dataset are included in the systematic reviews. This makes the SYNERGY dataset a unique dataset for the development of information retrieval algorithms, especially for sparse labels. Due to the many available variables available per record (i.e. titles, abstracts, authors, references, topics), this dataset is useful for researchers in NLP, machine learning, network analysis, and more. In total, the dataset contains 82,668,134 trainable data points. The easiest way to get the SYNERGY dataset is via the synergy-dataset Python package. See https://github.com/asreview/synergy-dataset for all information.
Facebook
TwitterThis dataset consists of imagery, imagery footprints, associated ice seal detections and homography files associated with the KAMERA Test Flights conducted in 2019. This dataset was subset to include relevant data for detection algorithm development. This dataset is limited to data collected during flights 4, 5, 6 and 7 from our 2019 surveys.
Facebook
TwitterAttribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
This set consists of a longitudinal collection of 150 subjects aged 60 to 96. Each subject was scanned on two or more visits, separated by at least one year for a total of 373 imaging sessions. For each subject, 3 or 4 individual T1-weighted MRI scans obtained in single scan sessions are included. The subjects are all right-handed and include both men and women. 72 of the subjects were characterized as nondemented throughout the study. 64 of the included subjects were characterized as demented at the time of their initial visits and remained so for subsequent scans, including 51 individuals with mild to moderate Alzheimer’s disease. Another 14 subjects were characterized as nondemented at the time of their initial visit and were subsequently characterized as demented at a later visit.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
Banana Machine Learning is a dataset for object detection tasks - it contains Pisang annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
Facebook
Twitterbrucewlee1/mmlu-machine-learning dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is used to train machine learning model for the study of passivation effect of small molecules
Facebook
TwitterAPISCRAPY's AI & ML training data is meticulously curated and labelled to ensure the best quality. Our training data comes from a variety of areas, including healthcare and banking, as well as e-commerce and natural language processing.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Projek Machine Learning is a dataset for object detection tasks - it contains Deteksi Rempah Rempah annotations for 2,978 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is prepared and intended as a data source for development of a stress analysis method based on machine learning. It consists of finite element stress analyses of randomly generated mechanical structures. The dataset contains more than 270,794 pairs of stress analyses images (von Mises stress) of randomly generated 2D structures with predefined thickness and material properties. All the structures are fixed at their bottom edges and loaded with gravity force only. See PREVIEW directory with some examples. The zip file contains all the files in the dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We provide the generated dataset used for supervised machine learning in [1]. The data is in CSV format and contains all principal components and ground truth labels per tissue type. Tissue type codes used are; C1 for kidney, C2 for skin, and C3 for colon. 'PC' stands for the principal component. For feature extraction specifications, please see the original design in [1]. Features have been extracted independently for each tissue type.
Reference: [1] Prezja, F.; Pölönen, I.; Äyrämö, S.; Ruusuvuori, P.; Kuopio, T. H&E Multi-Laboratory Staining Variance Exploration with Machine Learning. Appl. Sci. 2022, 12, 7511. https://doi.org/10.3390/app12157511
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.
GitHub page: https://github.com/soarsmu/NICHE
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Machine Learning Market size was valued at USD 10.24 Billion in 2024 and is projected to reach USD 200.08 Billion by 2032, growing at a CAGR of 10.9% from 2026 to 2032.Global Machine Learning Market DriversIncreasing Data Volume and Complexity: The exponential surge in data volume and complexity serves as the foundational catalyst for the Machine Learning market. Modern enterprises generate massive, intricate datasets from sources like IoT devices, social media platforms, and e-commerce transactions, all of which are too vast for traditional analytical methods.Advancements in AI and Deep Learning Algorithms: Continuous, rapid advancements in Artificial Intelligence (AI) and Deep Learning (DL) algorithms are dramatically expanding the capabilities and commercial viability of ML, acting as a major market accelerator. Deep learning, a subset of ML based on complex neural networks, has unlocked new levels of performance in difficult tasks such as natural language processing, computer vision, and predictive modeling.
Facebook
TwitterGroundwater is a vital resource in the Mississippi embayment of the central United States. An innovative approach using machine learning (ML) was employed to predict groundwater salinity—including specific conductance (SC), total dissolved solids (TDS), and chloride (Cl) concentrations—across three drinking-water aquifers of the Mississippi embayment. A ML approach was used because it accommodates a large and diverse set of explanatory variables, does not assume monotonic relations between predictors and response data, and results can be extrapolated to areas of the aquifer not sampled. These aspects of ML allowed potential drivers and sources of high salinity water that have been hypothesized in other studies to be included as explanatory variables. The ML approach integrated output from a groundwater-flow model and water-quality data to predict salinity, and the approach can be applied to other aquifers to provide context for the long-term availability of groundwater resources. The Mississippi embayment includes two principal regional aquifer systems; the surficial aquifer system, dominated by the Quaternary Mississippi River Valley Alluvial aquifer (MRVA), and the Mississippi embayment aquifer system, which includes deeper Tertiary aquifers and confining units. Based on the distribution of groundwater use for drinking water, the modeling focused on the MRVA, middle Claiborne aquifer (MCAQ), and lower Claiborne aquifer (LCAQ). Boosted regression tree (BRT) models (Elith and others, 2008; Kuhn and Johnson, 2013) were developed to predict SC and Cl to 1-kilometer (km) raster grid cells of the National Hydrologic Grid (Clark and others, 2018) for 7 aquifer layers (1 MRVA, 4 MCAQ, 2 LCAQ) following the hydrogeologic framework of Hart and others (2008). TDS maps were created using the correlation between SC and TDS. Explanatory variables for the BRT models included attributes associated with well location and construction, surficial variables (such as soils and land use), and variables extracted from a MODFLOW groundwater flow model for the Mississippi embayment (Haugh and others, 2020a; Haugh and others, 2020b). Prediction intervals were calculated for SC and Cl by bootstrapping raster-cell predictions following methods from Ransom and others (2017). For a full description of modeling workflow and final model selection see Knierim and others (2020).
Facebook
TwitterAttribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
License information was derived automatically
Sample selection of 10k images from Geograph Britain and Ireland, randomly distubuted for good geographical spread. Presized for use in Machine Learning/Image Vision processing.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The diamond is 58 times harder than any other mineral in the world, and its elegance as a jewel has long been appreciated. Forecasting diamond prices is challenging due to nonlinearity in important features such as carat, cut, clarity, table, and depth. Against this backdrop, the study conducted a comparative analysis of the performance of multiple supervised machine learning models (regressors and classifiers) in predicting diamond prices. Eight supervised machine learning algorithms were evaluated in this work including Multiple Linear Regression, Linear Discriminant Analysis, eXtreme Gradient Boosting, Random Forest, k-Nearest Neighbors, Support Vector Machines, Boosted Regression and Classification Trees, and Multi-Layer Perceptron. The analysis is based on data preprocessing, exploratory data analysis (EDA), training the aforementioned models, assessing their accuracy, and interpreting their results. Based on the performance metrics values and analysis, it was discovered that eXtreme Gradient Boosting was the most optimal algorithm in both classification and regression, with a R2 score of 97.45% and an Accuracy value of 74.28%. As a result, eXtreme Gradient Boosting was recommended as the optimal regressor and classifier for forecasting the price of a diamond specimen. Methods Kaggle, a data repository with thousands of datasets, was used in the investigation. It is an online community for machine learning practitioners and data scientists, as well as a robust, well-researched, and sufficient resource for analyzing various data sources. On Kaggle, users can search for and publish various datasets. In a web-based data-science environment, they can study datasets and construct models.
Facebook
Twitterhttps://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/
In a small office in Kansas City, a team of logistics analysts watched as their machine learning dashboard updated in real-time. A year ago, their operation was manually handled by a dozen staff. Today, a few predictive models automatically schedule fleets, detect bottlenecks, and reduce fuel costs, thanks to machine...
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Three datasets are intended to be used for exploring machine learning applications in materials science. They are formatted in simple form and in particular for easy input into the MAterials Simulation Toolkit - Machine Learning (MAST-ML) package (see https://github.com/uw-cmg/MAST-ML).Each dataset is a materials property of interest and associated descriptors. For detailed information, please see the attached REAME text file.The first dataset for dilute solute diffusion can be used to predict an effective diffusion barrier for a solute element moving through another host element. The dataset has been calculated with DFT methods.The second dataset for perovskite stability gives energies of compostions of potential perovskite materials relative to the convex hull calculated with DFT. The perovskite dataset also includes columns with information about the A site, B site, and X site in the perovskite structure in order to perform more advanced grouping of the data.The third dataset is a metallic glasses dataset which has values of reduced glass transition temperature (Trg) for a variety of metallic alloys. An additional column is included for majority element for each alloy, which can be an interesting property to group on during tests.
Facebook
TwitterAs of 2025, a total of approximately 51,565 products and services were offered on Amazon Web Services' (AWS) marketplace, of which 13,231 belonged to the largest category, infrastructure software. The AWS marketplace is a digital catalog on which independent software vendors can list their products and services. This enables AWS customers to pick from various solutions that run on AWS to cater to their specific needs.
Facebook
TwitterThis model archive contains the input data, model code, and model outputs for machine learning models that predict daily non-tidal stream salinity (specific conductance) for a network of 459 modeled stream segments across the Delaware River Basin (DRB) from 1984-09-30 to 2021-12-31. There are a total of twelve models from combinations of two machine learning models (Random Forest and Recurrent Graph Convolution Neural Networks), two training/testing partitions (spatial and temporal), and three input attribute sets (dynamic attributes, dynamic and static attributes, and dynamic attributes and a minimum set of static attributes). In addition to the inputs and outputs for non-tidal predictions provided on the landing page, we also provide example predictions for models trained with additional tidal stream segments within the model archive (TidalExample folder), but we do not recommend our models for this use case. Model outputs contained within the model archive include performance metrics, plots of spatial and temporal errors, and Shapley (SHAP) explainable artificial intelligence plots for the best models. The results of these models provide insights into DRB stream segments with elevated salinity, and processes that drive stream salinization across the DRB, which may be used to inform salinity management. This data compilation was funded by the USGS.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.