100+ datasets found
  1. Machine Learning Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jun 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Machine Learning Dataset [Dataset]. https://brightdata.com/products/datasets/machine-learning
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jun 19, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.

  2. D

    SYNERGY - Open machine learning dataset on study selection in systematic...

    • dataverse.nl
    csv, json, txt, zip
    Updated Apr 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan De Bruin; Jonathan De Bruin; Yongchao Ma; Yongchao Ma; Gerbrich Ferdinands; Gerbrich Ferdinands; Jelle Teijema; Jelle Teijema; Rens Van de Schoot; Rens Van de Schoot (2023). SYNERGY - Open machine learning dataset on study selection in systematic reviews [Dataset]. http://doi.org/10.34894/HE6NAQ
    Explore at:
    txt(212), json(702), zip(16028323), json(19426), txt(263), zip(3560967), txt(305), json(470), txt(279), zip(2355371), json(23201), csv(460956), txt(200), json(685), json(546), csv(63996), zip(2989015), zip(5749455), txt(331), txt(315), json(691), json(23775), csv(672721), json(468), txt(415), json(22778), csv(31919), csv(746832), json(18392), zip(62992826), csv(234822), txt(283), zip(34788857), json(475), txt(242), json(533), csv(42227), json(24548), zip(738232), json(22477), json(25491), zip(11463283), json(17741), csv(490660), json(19662), json(578), csv(19786), zip(14708207), zip(24619707), zip(2404439), json(713), json(27224), json(679), json(26426), txt(185), json(906), zip(18534723), json(23550), txt(266), txt(317), zip(6019723), json(33943), txt(436), csv(388378), json(469), zip(2106498), txt(320), csv(451336), txt(338), zip(19428163), json(14326), json(31652), txt(299), csv(96153), txt(220), csv(114789), json(15452), csv(5372708), json(908), csv(317928), csv(150923), json(465), csv(535584), json(26090), zip(8164831), json(19633), txt(316), json(23494), csv(133950), json(18638), csv(3944082), json(15345), json(473), zip(4411063), zip(10396095), zip(835096), txt(255), json(699), csv(654705), txt(294), csv(989865), zip(1028035), txt(322), zip(15085090), txt(237), txt(310), json(756), json(30628), json(19490), json(25908), txt(401), json(701), zip(5543909), json(29397), zip(14007470), json(30058), zip(58869042), csv(852937), json(35711), csv(298011), csv(187163), txt(258), zip(3526740), json(568), json(21552), zip(66466788), csv(215250), json(577), csv(103010), txt(306), zip(11840006)Available download formats
    Dataset updated
    Apr 24, 2023
    Dataset provided by
    DataverseNL
    Authors
    Jonathan De Bruin; Jonathan De Bruin; Yongchao Ma; Yongchao Ma; Gerbrich Ferdinands; Gerbrich Ferdinands; Jelle Teijema; Jelle Teijema; Rens Van de Schoot; Rens Van de Schoot
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    SYNERGY is a free and open dataset on study selection in systematic reviews, comprising 169,288 academic works from 26 systematic reviews. Only 2,834 (1.67%) of the academic works in the binary classified dataset are included in the systematic reviews. This makes the SYNERGY dataset a unique dataset for the development of information retrieval algorithms, especially for sparse labels. Due to the many available variables available per record (i.e. titles, abstracts, authors, references, topics), this dataset is useful for researchers in NLP, machine learning, network analysis, and more. In total, the dataset contains 82,668,134 trainable data points. The easiest way to get the SYNERGY dataset is via the synergy-dataset Python package. See https://github.com/asreview/synergy-dataset for all information.

  3. d

    A Dataset for Machine Learning Algorithm Development

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated May 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2024). A Dataset for Machine Learning Algorithm Development [Dataset]. https://catalog.data.gov/dataset/a-dataset-for-machine-learning-algorithm-development2
    Explore at:
    Dataset updated
    May 1, 2024
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    This dataset consists of imagery, imagery footprints, associated ice seal detections and homography files associated with the KAMERA Test Flights conducted in 2019. This dataset was subset to include relevant data for detection algorithm development. This dataset is limited to data collected during flights 4, 5, 6 and 7 from our 2019 surveys.

  4. m

    Data for: MACHINE LEARNING IN MEDICINE: CLASSIFICATION AND PREDICTION OF...

    • data.mendeley.com
    Updated Jul 2, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gopi Battineni (2019). Data for: MACHINE LEARNING IN MEDICINE: CLASSIFICATION AND PREDICTION OF DEMENTIA BY SUPPORT VECTOR MACHINES (SVM) [Dataset]. http://doi.org/10.17632/tsy6rbc5d4.1
    Explore at:
    Dataset updated
    Jul 2, 2019
    Authors
    Gopi Battineni
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    This set consists of a longitudinal collection of 150 subjects aged 60 to 96. Each subject was scanned on two or more visits, separated by at least one year for a total of 373 imaging sessions. For each subject, 3 or 4 individual T1-weighted MRI scans obtained in single scan sessions are included. The subjects are all right-handed and include both men and women. 72 of the subjects were characterized as nondemented throughout the study. 64 of the included subjects were characterized as demented at the time of their initial visits and remained so for subsequent scans, including 51 individuals with mild to moderate Alzheimer’s disease. Another 14 subjects were characterized as nondemented at the time of their initial visit and were subsequently characterized as demented at a later visit.

  5. R

    Banana Machine Learning Dataset

    • universe.roboflow.com
    zip
    Updated Dec 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MHFaisalb (2023). Banana Machine Learning Dataset [Dataset]. https://universe.roboflow.com/mhfaisalb/banana-machine-learning
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 11, 2023
    Dataset authored and provided by
    MHFaisalb
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Pisang Bounding Boxes
    Description

    Banana Machine Learning

    ## Overview
    
    Banana Machine Learning is a dataset for object detection tasks - it contains Pisang annotations for 200 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  6. h

    mmlu-machine-learning

    • huggingface.co
    Updated Feb 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bruce W. Lee (2024). mmlu-machine-learning [Dataset]. https://huggingface.co/datasets/brucewlee1/mmlu-machine-learning
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 7, 2024
    Authors
    Bruce W. Lee
    Description

    brucewlee1/mmlu-machine-learning dataset hosted on Hugging Face and contributed by the HF Datasets community

  7. machine-learning dataset

    • figshare.com
    xlsx
    Updated Sep 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    zhang xin (2023). machine-learning dataset [Dataset]. http://doi.org/10.6084/m9.figshare.24115383.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 10, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    zhang xin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is used to train machine learning model for the study of passivation effect of small molecules

  8. m

    AI & ML Training Data | Artificial Intelligence (AI) | Machine Learning (ML)...

    • apiscrapy.mydatastorefront.com
    Updated Nov 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2024). AI & ML Training Data | Artificial Intelligence (AI) | Machine Learning (ML) Datasets | Deep Learning Datasets | Easy to Integrate | Free Sample [Dataset]. https://apiscrapy.mydatastorefront.com/products/ai-ml-training-data-ai-learning-dataset-ml-learning-dataset-apiscrapy
    Explore at:
    Dataset updated
    Nov 19, 2024
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Canada, Switzerland, Belgium, Monaco, Ă…land Islands, Japan, France, Romania, Slovakia, United Kingdom
    Description

    APISCRAPY's AI & ML training data is meticulously curated and labelled to ensure the best quality. Our training data comes from a variety of areas, including healthcare and banking, as well as e-commerce and natural language processing.

  9. R

    Projek Machine Learning Dataset

    • universe.roboflow.com
    zip
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    projek machine learning (2024). Projek Machine Learning Dataset [Dataset]. https://universe.roboflow.com/projek-machine-learning/projek-machine-learning-ucmet
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 6, 2024
    Dataset authored and provided by
    projek machine learning
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Deteksi Rempah Rempah Bounding Boxes
    Description

    Projek Machine Learning

    ## Overview
    
    Projek Machine Learning is a dataset for object detection tasks - it contains Deteksi Rempah Rempah annotations for 2,978 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  10. m

    A dataset for machine learning research in the field of stress analyses of...

    • data.mendeley.com
    • narcis.nl
    Updated Jul 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jaroslav Matej (2020). A dataset for machine learning research in the field of stress analyses of mechanical structures [Dataset]. http://doi.org/10.17632/wzbzznk8z3.2
    Explore at:
    Dataset updated
    Jul 25, 2020
    Authors
    Jaroslav Matej
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is prepared and intended as a data source for development of a stress analysis method based on machine learning. It consists of finite element stress analyses of randomly generated mechanical structures. The dataset contains more than 270,794 pairs of stress analyses images (von Mises stress) of randomly generated 2D structures with predefined thickness and material properties. All the structures are fixed at their bottom edges and loaded with gravity force only. See PREVIEW directory with some examples. The zip file contains all the files in the dataset.

  11. m

    Multi-Laboratory Hematoxylin and Eosin Staining Variance Supervised Machine...

    • data.mendeley.com
    • figshare.com
    Updated Sep 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabi Prezja (2022). Multi-Laboratory Hematoxylin and Eosin Staining Variance Supervised Machine Learning Dataset [Dataset]. http://doi.org/10.17632/8c5hkbwykd.1
    Explore at:
    Dataset updated
    Sep 12, 2022
    Authors
    Fabi Prezja
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We provide the generated dataset used for supervised machine learning in [1]. The data is in CSV format and contains all principal components and ground truth labels per tissue type. Tissue type codes used are; C1 for kidney, C2 for skin, and C3 for colon. 'PC' stands for the principal component. For feature extraction specifications, please see the original design in [1]. Features have been extracted independently for each tissue type.

    Reference: [1] Prezja, F.; Pölönen, I.; Äyrämö, S.; Ruusuvuori, P.; Kuopio, T. H&E Multi-Laboratory Staining Variance Exploration with Machine Learning. Appl. Sci. 2022, 12, 7511. https://doi.org/10.3390/app12157511

  12. Data from: NICHE: A Curated Dataset of Engineered Machine Learning Projects...

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO (2023). NICHE: A Curated Dataset of Engineered Machine Learning Projects in Python [Dataset]. http://doi.org/10.6084/m9.figshare.21967265.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.

    GitHub page: https://github.com/soarsmu/NICHE

  13. Global Machine Learning Market Size By Component (Hardware, Software,...

    • verifiedmarketresearch.com
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Global Machine Learning Market Size By Component (Hardware, Software, Services), By Enterprise Size (Small and Medium Enterprises (SMEs), Large Enterprises), By End-User (Advertising & Media, Healthcare, BFSI, Law, Retail), By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/global-machine-learning-market-size-and-forecast/
    Explore at:
    Dataset updated
    Oct 15, 2025
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Machine Learning Market size was valued at USD 10.24 Billion in 2024 and is projected to reach USD 200.08 Billion by 2032, growing at a CAGR of 10.9% from 2026 to 2032.Global Machine Learning Market DriversIncreasing Data Volume and Complexity: The exponential surge in data volume and complexity serves as the foundational catalyst for the Machine Learning market. Modern enterprises generate massive, intricate datasets from sources like IoT devices, social media platforms, and e-commerce transactions, all of which are too vast for traditional analytical methods.Advancements in AI and Deep Learning Algorithms: Continuous, rapid advancements in Artificial Intelligence (AI) and Deep Learning (DL) algorithms are dramatically expanding the capabilities and commercial viability of ML, acting as a major market accelerator. Deep learning, a subset of ML based on complex neural networks, has unlocked new levels of performance in difficult tasks such as natural language processing, computer vision, and predictive modeling.

  14. d

    Data from: Machine-learning model predictions and groundwater-quality...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Machine-learning model predictions and groundwater-quality rasters of specific conductance, total dissolved solids, and chloride in aquifers of the Mississippi Embayment [Dataset]. https://catalog.data.gov/dataset/machine-learning-model-predictions-and-groundwater-quality-rasters-of-specific-conductance
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Groundwater is a vital resource in the Mississippi embayment of the central United States. An innovative approach using machine learning (ML) was employed to predict groundwater salinity—including specific conductance (SC), total dissolved solids (TDS), and chloride (Cl) concentrations—across three drinking-water aquifers of the Mississippi embayment. A ML approach was used because it accommodates a large and diverse set of explanatory variables, does not assume monotonic relations between predictors and response data, and results can be extrapolated to areas of the aquifer not sampled. These aspects of ML allowed potential drivers and sources of high salinity water that have been hypothesized in other studies to be included as explanatory variables. The ML approach integrated output from a groundwater-flow model and water-quality data to predict salinity, and the approach can be applied to other aquifers to provide context for the long-term availability of groundwater resources. The Mississippi embayment includes two principal regional aquifer systems; the surficial aquifer system, dominated by the Quaternary Mississippi River Valley Alluvial aquifer (MRVA), and the Mississippi embayment aquifer system, which includes deeper Tertiary aquifers and confining units. Based on the distribution of groundwater use for drinking water, the modeling focused on the MRVA, middle Claiborne aquifer (MCAQ), and lower Claiborne aquifer (LCAQ). Boosted regression tree (BRT) models (Elith and others, 2008; Kuhn and Johnson, 2013) were developed to predict SC and Cl to 1-kilometer (km) raster grid cells of the National Hydrologic Grid (Clark and others, 2018) for 7 aquifer layers (1 MRVA, 4 MCAQ, 2 LCAQ) following the hydrogeologic framework of Hart and others (2008). TDS maps were created using the correlation between SC and TDS. Explanatory variables for the BRT models included attributes associated with well location and construction, surficial variables (such as soils and land use), and variables extracted from a MODFLOW groundwater flow model for the Mississippi embayment (Haugh and others, 2020a; Haugh and others, 2020b). Prediction intervals were calculated for SC and Cl by bootstrapping raster-cell predictions following methods from Ransom and others (2017). For a full description of modeling workflow and final model selection see Knierim and others (2020).

  15. Geograph Machine Learning Dataset 2 - location based

    • data.geograph.org.uk
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geograph Britain and Ireland and Contributors, Geograph Machine Learning Dataset 2 - location based [Dataset]. https://data.geograph.org.uk/datasets.html
    Explore at:
    Dataset provided by
    Geograph Britain and Irelandhttp://www.geograph.org.uk/
    Authors
    Geograph Britain and Ireland and Contributors
    License

    Attribution-ShareAlike 2.0 (CC BY-SA 2.0)https://creativecommons.org/licenses/by-sa/2.0/
    License information was derived automatically

    Time period covered
    Dec 24, 1949 - Nov 14, 2021
    Area covered
    British Isles, United Kingdom
    Description

    Sample selection of 10k images from Geograph Britain and Ireland, randomly distubuted for good geographical spread. Presized for use in Machine Learning/Image Vision processing.

  16. n

    Data from: Assessing predictive performance of supervised machine learning...

    • data.niaid.nih.gov
    • datasetcatalog.nlm.nih.gov
    • +1more
    zip
    Updated May 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Evans Omondi (2023). Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model [Dataset]. http://doi.org/10.5061/dryad.wh70rxwrh
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 23, 2023
    Dataset provided by
    Strathmore University
    Authors
    Evans Omondi
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The diamond is 58 times harder than any other mineral in the world, and its elegance as a jewel has long been appreciated. Forecasting diamond prices is challenging due to nonlinearity in important features such as carat, cut, clarity, table, and depth. Against this backdrop, the study conducted a comparative analysis of the performance of multiple supervised machine learning models (regressors and classifiers) in predicting diamond prices. Eight supervised machine learning algorithms were evaluated in this work including Multiple Linear Regression, Linear Discriminant Analysis, eXtreme Gradient Boosting, Random Forest, k-Nearest Neighbors, Support Vector Machines, Boosted Regression and Classification Trees, and Multi-Layer Perceptron. The analysis is based on data preprocessing, exploratory data analysis (EDA), training the aforementioned models, assessing their accuracy, and interpreting their results. Based on the performance metrics values and analysis, it was discovered that eXtreme Gradient Boosting was the most optimal algorithm in both classification and regression, with a R2 score of 97.45% and an Accuracy value of 74.28%. As a result, eXtreme Gradient Boosting was recommended as the optimal regressor and classifier for forecasting the price of a diamond specimen. Methods Kaggle, a data repository with thousands of datasets, was used in the investigation. It is an online community for machine learning practitioners and data scientists, as well as a robust, well-researched, and sufficient resource for analyzing various data sources. On Kaggle, users can search for and publish various datasets. In a web-based data-science environment, they can study datasets and construct models.

  17. S

    Machine Learning Statistics 2025: Market Size, Adoption, and Key Trends

    • sqmagazine.co.uk
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SQ Magazine (2025). Machine Learning Statistics 2025: Market Size, Adoption, and Key Trends [Dataset]. https://sqmagazine.co.uk/machine-learning-statistics/
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset authored and provided by
    SQ Magazine
    License

    https://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/

    Time period covered
    Jan 1, 2024 - Dec 31, 2025
    Area covered
    Global
    Description

    In a small office in Kansas City, a team of logistics analysts watched as their machine learning dashboard updated in real-time. A year ago, their operation was manually handled by a dozen staff. Today, a few predictive models automatically schedule fleets, detect bottlenecks, and reduce fuel costs, thanks to machine...

  18. Machine Learning Materials Datasets

    • figshare.com
    txt
    Updated Sep 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dane Morgan (2018). Machine Learning Materials Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.7017254.v5
    Explore at:
    txtAvailable download formats
    Dataset updated
    Sep 11, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Dane Morgan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Three datasets are intended to be used for exploring machine learning applications in materials science. They are formatted in simple form and in particular for easy input into the MAterials Simulation Toolkit - Machine Learning (MAST-ML) package (see https://github.com/uw-cmg/MAST-ML).Each dataset is a materials property of interest and associated descriptors. For detailed information, please see the attached REAME text file.The first dataset for dilute solute diffusion can be used to predict an effective diffusion barrier for a solute element moving through another host element. The dataset has been calculated with DFT methods.The second dataset for perovskite stability gives energies of compostions of potential perovskite materials relative to the convex hull calculated with DFT. The perovskite dataset also includes columns with information about the A site, B site, and X site in the perovskite structure in order to perform more advanced grouping of the data.The third dataset is a metallic glasses dataset which has values of reduced glass transition temperature (Trg) for a variety of metallic alloys. An additional column is included for majority element for each alloy, which can be an interesting property to group on during tests.

  19. Global number of products and services offered on AWS marketplace 2024, by...

    • statista.com
    Updated Jun 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lionel Sujay Vailshery (2024). Global number of products and services offered on AWS marketplace 2024, by category [Dataset]. https://www.statista.com/topics/9583/machine-learning/
    Explore at:
    Dataset updated
    Jun 19, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Lionel Sujay Vailshery
    Description

    As of 2025, a total of approximately 51,565 products and services were offered on Amazon Web Services' (AWS) marketplace, of which 13,231 belonged to the largest category, infrastructure software. The AWS marketplace is a digital catalog on which independent software vendors can list their products and services. This enables AWS customers to pick from various solutions that run on AWS to cater to their specific needs.

  20. d

    Data from: Delaware River Basin Stream Salinity Machine Learning Models and...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Delaware River Basin Stream Salinity Machine Learning Models and Data [Dataset]. https://catalog.data.gov/dataset/delaware-river-basin-stream-salinity-machine-learning-models-and-data
    Explore at:
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This model archive contains the input data, model code, and model outputs for machine learning models that predict daily non-tidal stream salinity (specific conductance) for a network of 459 modeled stream segments across the Delaware River Basin (DRB) from 1984-09-30 to 2021-12-31. There are a total of twelve models from combinations of two machine learning models (Random Forest and Recurrent Graph Convolution Neural Networks), two training/testing partitions (spatial and temporal), and three input attribute sets (dynamic attributes, dynamic and static attributes, and dynamic attributes and a minimum set of static attributes). In addition to the inputs and outputs for non-tidal predictions provided on the landing page, we also provide example predictions for models trained with additional tidal stream segments within the model archive (TidalExample folder), but we do not recommend our models for this use case. Model outputs contained within the model archive include performance metrics, plots of spatial and temporal errors, and Shapley (SHAP) explainable artificial intelligence plots for the best models. The results of these models provide insights into DRB stream segments with elevated salinity, and processes that drive stream salinization across the DRB, which may be used to inform salinity management. This data compilation was funded by the USGS.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2024). Machine Learning Dataset [Dataset]. https://brightdata.com/products/datasets/machine-learning
Organization logo

Machine Learning Dataset

Explore at:
.json, .csv, .xlsxAvailable download formats
Dataset updated
Jun 19, 2024
Dataset authored and provided by
Bright Datahttps://brightdata.com/
License

https://brightdata.com/licensehttps://brightdata.com/license

Area covered
Worldwide
Description

Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.

Search
Clear search
Close search
Google apps
Main menu