https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
THIS DATASET WAS LAST UPDATED AT 2:11 AM EASTERN ON AUG. 11
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.happierway.org/wp-content/uploads/2021/03/Capture-1.png" alt="World Happiness report 2021">
This dataset contains the mortality data due to various factors across the globe in different countries from the Ninth World Happiness report (2021). The World Happiness Report 2021 focuses on the effects of COVID-19 and how people all over the world have fared.
This dataset contains data such as the various countries selected, their respective populations in the year 2019 and 2020, total COVID-19 deaths in each of these countries, the median age in the corresponding countries considered, whether it is an island or not, index of exposure to COVID-19 infections in other countries as of march 31, log of average distance to SARS countries, whether it is a WHO western pacific region, whether a female head of government or not. In particular, we try to explain why some countries have done so much better than others.
The preparation of the first World Happiness report was based in the Earth Institute at Columbia University, with the Centre for Economic Performance’s research support at the LSE and the Canadian Institute for Advanced Research, through their grants supporting research at the Vancouver School of Economics at UBC. Also keeping in mind the current situation across the globe, it has inspired me to share this dataset and make some interesting conclusions. The aim was two-fold, first to focus on the effects of COVID-19 on the structure and quality of people’s lives, and second to describe and evaluate how governments all over the world have dealt with the pandemic. The detailed dataset can be found in the following website https://worldhappiness.report/ed/2021/ with some other interesting statistics!
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.
B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from: * Case interviews * Laboratories * Medical providers These multiple streams of data are merged, deduplicated, and undergo data verification processes.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.
Gender * The City collects information on gender identity using these guidelines.
Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives. * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.
Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. https://www.sfdph.org/dph/files/PoliciesProcedures/COM9_SexualOrientationGuidelines.pdf">Learn more about our data collection guidelines pertaining to sexual orientation.
Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.
Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.
Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.
Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.
C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023.
D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cases on each date.
New cases are the count of cases within that characteristic group where the positive tests were collected on that specific specimen collection date. Cumulative cases are the running total of all San Francisco cases in that characteristic group up to the specimen collection date listed.
This data may not be immediately available for recently reported cases. Data updates as more information becomes available.
To explore data on the total number of cases, use the ARCHIVED: COVID-19 Cases Over Time dataset.
E. CHANGE LOG
This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by ZIP Code Tabulation Area (ZCTA) neighborhood poverty group. These data can also be accessed here: https://res1githubd-o-tcom.vcapture.xyz/nychealth/coronavirus-data/blob/master/totals/antibody-by-poverty.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Neighborhood-level poverty groups were classified in a manner consistent with Health Department practices to describe and monitor disparities in health in NYC. Neighborhood poverty measures are defined as the percentage of people earning below the Federal Poverty Threshold (FPT) within a ZCTA. The standard cut-points for defining categories of neighborhood-level poverty in NYC are: • Low: <10% of residents in ZCTA living below the FPT • Medium: 10% to <20% • High: 20% to <30% • Very high: ≥30% residents living below the FPT The ZCTAs used for classification reflect the first non-missing address within NYC for each person reported with an antibody test result. Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Rates for poverty were calculated using direct standardization for age at diagnosis and weighting by the US 2000 standard population. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certain
As the world is fighting against this invisible enemy a lot of data-driven students like me want to study it as well as we can. There is an enormous number of data set available on covid19 today but as a beginner, in this field, I wanted to find some more simple data. So here I come up with this covid19 data set which I scrapped from "https://www.worldometers.info/coronavirus". It is my way of learning by doing. This data is till 5/17/2020. I will keep on updating it.
The dataset contains 194 rows and 12 columns which are described below:-
Country: Contains the name of all Countries. Total_Cases: It contains the total number of cases the country has till 5/17/2020. Total_Deaths: Total number of deaths in that country till 5/17/2020. Total_Recovered: Total number of individuals recovered from covid19. Active_Cases: Total active cases in the country on 5/17/2020. Critical_Cases: Number of patients in critical condition. Cases/Million_Population: Number of cases per million population of that country. Deaths/Million_Population: Number of deaths per million population of that country. Total_Tests: Total number of tests performed 5/17/2020 Tests/Million_Population: Number of tests performed per million population. Population: Population of the country Continent: Continent in which the country lies.
A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
https://qdr.syr.edu/policies/qdr-restricted-access-conditionshttps://qdr.syr.edu/policies/qdr-restricted-access-conditions
Project Summary This dataset contains all qualitative and quantitative data collected in the first phase of the Pandemic Journaling Project (PJP). PJP is a combined journaling platform and interdisciplinary, mixed-methods research study developed by two anthropologists, with support from a team of colleagues and students across the social sciences, humanities, and health fields. PJP launched in Spring 2020 as the COVID-19 pandemic was emerging in the United States. PJP was created in order to “pre-design an archive” of COVID-19 narratives and experiences open to anyone around the world. The project is rooted in a commitment to democratizing knowledge production, in the spirit of “archival activism” and using methods of “grassroots collaborative ethnography” (Willen et al. 2022; Wurtz et al. 2022; Zhang et al 2020; see also Carney 2021). The motto on the PJP website encapsulates these commitments: “Usually, history is written only by the powerful. When the history of COVID-19 is written, let’s make sure that doesn’t happen.” (A version of this Project Summary with links to the PJP website and other relevant sites is included in the public documentation of the project at QDR.) In PJP’s first phase (PJP-1), the project provided a digital space where participants could create weekly journals of their COVID-19 experiences using a smartphone or computer. The platform was designed to be accessible to as wide a range of potential participants as possible. Anyone aged 15 or older, living anywhere in the world, could create journal entries using their choice of text, images, and/or audio recordings. The interface was accessible in English and Spanish, but participants could submit text and audio in any language. PJP-1 ran on a weekly basis from May 2020 to May 2022. Data Overview This Qualitative Data Repository (QDR) project contains all journal entries and closed-ended survey responses submitted during PJP-1, along with accompanying descriptive and explanatory materials. The dataset includes individual journal entries and accompanying quantitative survey responses from more than 1,800 participants in 55 countries. Of nearly 27,000 journal entries in total, over 2,700 included images and over 300 are audio files. All data were collected via the Qualtrics survey platform. PJP-1 was approved as a research study by the Institutional Review Board (IRB) at the University of Connecticut. Participants were introduced to the project in a variety of ways, including through the PJP website as well as professional networks, PJP’s social media accounts (on Facebook, Instagram, and Twitter) , and media coverage of the project. Participants provided a single piece of contact information — an email address or mobile phone number — which was used to distribute weekly invitations to participate. This contact information has been stripped from the dataset and will not be accessible to researchers. PJP uses a mixed-methods research approach and a dynamic cohort design. After enrolling in PJP-1 via the project’s website, participants received weekly invitations to contribute to their journals via their choice of email or SMS (text message). Each weekly invitation included a link to that week’s journaling prompts and accompanying survey questions. Participants could join at any point, and they could stop participating at any point as well. They also could stop participating and later restart. Retention was encouraged with a monthly raffle of three $100 gift cards. All individuals who had contributed that month were eligible. Regardless of when they joined, all participants received the project’s narrative prompts and accompanying survey questions in the same order. In Week 1, before contributing their first journal entries, participants were presented with a baseline survey that collected demographic information, including political leanings, as well as self-reported data about COVID-19 exposure and physical and mental health status. Some of these survey questions were repeated at periodic intervals in subsequent weeks, providing quantitative measures of change over time that can be analyzed in conjunction with participants' qualitative entries. Surveys employed validated questions where possible. The core of PJP-1 involved two weekly opportunities to create journal entries in the format of their choice (text, image, and/or audio). Each week, journalers received a link with an invitation to create one entry in response to a recurring narrative prompt (“How has the COVID-19 pandemic affected your life in the past week?”) and a second journal entry in response to their choice of two more tightly focused prompts. Typically the pair of prompts included one focusing on subjective experience (e.g., the impact of the pandemic on relationships, sense of social connectedness, or mental health) and another with an external focus (e.g., key sources of scientific information, trust in government, or COVID-19’s economic impact). Each week,...
A randomised controlled trial of an intervention designed to teach reading and language skills to children with Down syndrome. The study was conducted by researchers at Down Syndrome Education International and at The Centre for Reading and Language at the University of York. This archive includes data from a randomised controlled trial of an intervention designed to teach reading and language skills to children with Down syndrome. The study was conducted by researchers at Down Syndrome Education International and at The Centre for Reading and Language at the University of York. Our research explores how children with Down syndrome develop and learn, and identifies more effective teaching approaches and therapies. We have a unique focus and a successful 30-year track record in delivering research that today is improving educational outcomes for many thousands of young people with Down syndrome around the world. We focus on practical scientific studies of young people with Down syndrome that identify their precise learning difficulties and that evaluate teaching approaches and therapies designed to meet their particular needs. We take a 'real world' view of development, studying learning for young people with Down syndrome in everyday family life and in school. Many things influence development, including our genes, our families and communities, and the opportunities that we are offered. Our research examines all of these factors in the context of the complex and cumulative processes of human development. Trained TAs delivered a reading and language intervention to children on an individual basis in daily 40-min sessions in the children’s schools. The performance of children who received the intervention for 40 weeks (intervention group) was compared to a waiting control group who continued with their regular education during the first 20 weeks (which included one-to-one support from a TA) before receiving the intervention in just the second 20-week period. This information is included in our paper; for further information and description of the study and link to handbook and resources for teachers, please see our RLI website (Related Resources).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains responses from an online survey of 2187 participants primarily located in the UK. All participants stated that they had used the UK National Health Service (NHS) at some time in their lives. The data were collected between December 2018 and August 2019. Participants' views on data sharing - this dataset contains information about people's willingness to share mental and physical health data for research purposes. It also includes information on willingness to share other types of data, such as financial information. The dataset includes participants' responses to questions relating to mental health data sharing, including the trustworthiness of organisations which use such data, how much the presence of different governance measures (such as deidentification, opt-out, etc.) would alter their views, and whether they would be less likely to access NHS mental health services if they knew their data might be shared with researchers. Participants' satisfaction and interaction with UK mental and physical health services - the dataset includes information regarding participants' views on and interaction with NHS services. This includes ratings of satisfaction at first contact and in the previous 12 months, frequency of use, and type of treatment received. Information about participants - the dataset includes information about participants' mental and physical health, including whether or not they have experience with specific mental health conditions, and how they would rate their mental and physical health at the time of the survey. There is also basic demographic information about the participants (e.g. age, gender, location etc.).
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset includes data on a variety of substance use services funded by the San Francisco Department of Public Health (SFDPH). This dataset only includes Drug MediCal-certified residential treatment, withdrawal management, and methadone treatment. Other private non-Drug Medi-Cal treatment providers may operate in the city. Withdrawal management discharges are inclusive of anyone who left withdrawal management after admission and may include someone who left before completing withdrawal management.
This dataset also includes naloxone distribution from the SFDPH Behavioral Health Services Naloxone Clearinghouse and the SFDPH-funded Drug Overdose Prevention and Education program. Both programs distribute naloxone to various community-based organizations who then distribute naloxone to their program participants. Programs may also receive naloxone from other sources. Data from these other sources is not included in this dataset.
Finally, this dataset includes the number of clients on medications for opioid use disorder (MOUD).
The number of people who were treated with methadone at a Drug Medi-Cal certified Opioid Treatment Program (OTP) by year is populated by the San Francisco Department of Public Health (SFDPH) Behavioral Health Services Quality Management (BHSQM) program. OTPs in San Francisco are required to submit patient billing data in an electronic medical record system called Avatar. BHSQM calculates the number of people who received methadone annually based on Avatar data. Data only from Drug MediCal certified OTPs were included in this dataset.
The number of people who receive buprenorphine by year is populated from the Controlled Substance Utilization Review and Evaluation System (CURES), administered by the California Department of Justice. All licensed prescribers in California are required to document controlled substance prescriptions in CURES. The Center on Substance Use and Health calculates the total number of people who received a buprenorphine prescription annually based on CURES data. Formulations of buprenorphine that are prescribed only for pain management are excluded.
People may receive buprenorphine and methadone in the same year, so you cannot add the Buprenorphine Clients by Year, and Methadone Clients by Year data together to get the total number of unique people receiving medications for opioid use disorder.
For more information on where to find treatment in San Francisco, visit findtreatment-sf.org.
B. HOW THE DATASET IS CREATED This dataset is created by copying the data into this dataset from the SFDPH Behavioral Health Services Quality Management Program, the California Controlled Substance Utilization Review and Evaluation System (CURES), and the Office of Overdose Prevention.
C. UPDATE PROCESS Residential Substance Use Treatment, Withdrawal Management, Methadone, and Naloxone data are updated quarterly with a 45-day delay. Buprenorphine data are updated quarterly and when the state makes this data available, usually at a 5-month delay.
D. HOW TO USE THIS DATASET Throughout the year this dataset may include partial year data for methadone and buprenorphine treatment. As both methadone and buprenorphine are used as long-term treatments for opioid use disorder, many people on treatment at the end of one calendar year will continue into the next. For this reason, doubling (methadone), or quadrupling (buprenorphine) partial year data will not accurately project year-end totals.
E. RELATED DATASETS Overdose-Related 911 Responses by Emergency Medical Services Unintentional Overdose Death Rates by Race/Ethnicity Preliminary Unintentional Drug Overdose Deaths
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
John Ioannidis and co-authors [1] created a publicly available database of top-cited scientists in the world. This database, intended to address the misuse of citation metrics, has generated a lot of interest among the scientific community, institutions, and media. Many institutions used this as a yardstick to assess the quality of researchers. At the same time, some people look at this list with skepticism citing problems with the methodology used. Two separate databases are created based on career-long and, single recent year impact. This database is created using Scopus data from Elsevier[1-3]. The Scientists included in this database are classified into 22 scientific fields and 174 sub-fields. The parameters considered for this analysis are total citations from 1996 to 2022 (nc9622), h index in 2022 (h22), c-score, and world rank based on c-score (Rank ns). Citations without self-cites are considered in all cases (indicated as ns). In the case of a single-year case, citations during 2022 (nc2222) instead of Nc9622 are considered.
To evaluate the robustness of c-score-based ranking, I have done a detailed analysis of the matrix parameters of the last 25 years (1998-2022) of Nobel laureates of Physics, chemistry, and medicine, and compared them with the top 100 rank holders in the list. The latest career-long and single-year-based databases (2022) were used for this analysis. The details of the analysis are presented below:
Though the article says the selection is based on the top 100,000 scientists by c-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field, the actual career-based ranking list has 204644 names[1]. The single-year database contains 210199 names. So, the list published contains ~ the top 4% of scientists. In the career-based rank list, for the person with the lowest rank of 4809825, the nc9622, h22, and c-score were 41, 3, and 1.3632, respectively. Whereas for the person with the No.1 rank in the list, the nc9622, h22, and c-score were 345061, 264, and 5.5927, respectively. Three people on the list had less than 100 citations during 96-2022, 1155 people had an h22 less than 10, and 6 people had a C-score less than 2.
In the single year-based rank list, for the person with the lowest rank (6547764), the nc2222, h22, and c-score were 1, 1, and 0. 6, respectively. Whereas for the person with the No.1 rank, the nc9622, h22, and c-score were 34582, 68, and 5.3368, respectively. 4463 people on the list had less than 100 citations in 2022, 71512 people had an h22 less than 10, and 313 people had a C-score less than 2. The entry of many authors having single digit H index and a very meager total number of citations indicates serious shortcomings of the c-score-based ranking methodology. These results indicate shortcomings in the ranking methodology.
By US Open Data Portal, data.gov [source]
This dataset contains over 300 examples of health IT policy levers used by states to advance interoperability, promote health IT and support delivery system reform. The U.S Government's Office of National Coordinator for Health Information Technology (ONC) has curated this catalog as part of its Health IT State Policy Levers Compendium. It provides an exhaustive directory on the policy levers being utilized, along with information on the state enacting them and their official sources. This collection seeks to act as a comprehensive guide for government officials and healthcare providers who are interested in state-based initiatives for optimizing health information technology. Explore the strategies your own state might be using to unlock improved patient outcomes!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides information on policy levers used by various states in the United States to promote health IT and advance interoperability. The comprehensive list includes over 300 documented examples of health IT policy levers used by these states. This catalog can be used to identify which specific policy levers are being used, as well as what activities they are associated with.
If you're interested in learning more about how states use health IT policy levers, this dataset is a great resource. It contains detailed information on each entry, including the state where it's being used, the status of that activity, a description of the activity and its purpose, and an official source for additional information about that particular entry.
Using this data set is easy - simply search for specific states or find out which kinds of activities each state is using their health IT policy levers for. You can also look up any specific application or implementation detail from each record by opening up its corresponding source URL link . With all this information at hand you can better understand how states use their health IT tools to make a difference in advancing interoperability within healthcare systems today!
- It can be used to provide states with potential models of successful health IT policy levers, allowing them to learn from the experiences of other states in developing and implementing health IT legislation.
- The dataset can also be used by researchers looking to study the effectiveness of existing health care policy levers, as well as to identify any gaps that need to be filled in order for certain policies to have a greater overall impact.
- Additionally, it could be used by industry stakeholders such as hospitals or other healthcare organizations for benchmarking their own efforts related to IT implementation, such as understanding what activities are being undertaken and which sources are being used for best practices or additional resources when making decisions related to new technology implementations into an organization's operations and services
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: policy-levers-activities-catalog-csv-1.csv | Column name | Description | |:-------------------------|:----------------------------------------------------------------------------------------------| | state | The state in which the policy lever is being used. (String) | | policy_lever | Type of policy lever being used. (String) | | activity_status | Status of activity (e.g., active or inactive). (String) | | activity_description | Description of activity. (String) | | source | Source from where data is gathered from. (String) | | source_url | A link that points directly back to an original sources with additional information. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit US Open Data Portal, data.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Society Hill by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Society Hill. The dataset can be utilized to understand the population distribution of Society Hill by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Society Hill. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Society Hill.
Key observations
Largest age group (population): Male # 60-64 years (31) | Female # 40-44 years (62). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Society Hill Population by Gender. You can refer the same here
The World Religion Project (WRP) aims to provide detailed information about religious adherence worldwide since 1945. It contains data about the number of adherents by religion in each of the states in the international system. These numbers are given for every half-decade period (1945, 1950, etc., through 2010). Percentages of the states' populations that practice a given religion are also provided. (Note: These percentages are expressed as decimals, ranging from 0 to 1, where 0 indicates that 0 percent of the population practices a given religion and 1 indicates that 100 percent of the population practices that religion.) Some of the religions (as detailed below) are divided into religious families. To the extent data are available, the breakdown of adherents within a given religion into religious families is also provided.
The project was developed in three stages. The first stage consisted of the formation of a religion tree. A religion tree is a systematic classification of major religions and of religious families within those major religions. To develop the religion tree we prepared a comprehensive literature review, the aim of which was (i) to define a religion, (ii) to find tangible indicators of a given religion of religious families within a major religion, and (iii) to identify existing efforts at classifying world religions. (Please see the original survey instrument to view the structure of the religion tree.) The second stage consisted of the identification of major data sources of religious adherence and the collection of data from these sources according to the religion tree classification. This created a dataset that included multiple records for some states for a given point in time. It also contained multiple missing data for specific states, specific time periods and specific religions. The third stage consisted of cleaning the data, reconciling discrepancies of information from different sources and imputing data for the missing cases.
The Global Religion Dataset: This dataset uses a religion-by-five-year unit. It aggregates the number of adherents of a given religion and religious group globally by five-year periods.
Abstract copyright UK Data Service and data collection copyright owner.The Skills Survey is a series of nationally representative sample surveys of individuals in employment aged 20-60 years old (since 2006, the surveys have additionally sampled those aged 61-65). The surveys aim to investigate the employed workforce in Great Britain. Although they were not originally planned as part of a series and had different funding sources and objectives, continuity in questionnaire design has meant the surveys now provide a unique, national representative picture of change in British workplaces as reported by individual job holders. This allows analysts to examine how various aspects of job quality and skill levels have changed over 30 years.The first surveys in the series were carried out in 1986 and 1992. These surveys also form part of this integrated data series, and are known as the Social Change and Economic Life Initiative (SCELI) and Employment in Britain (EIB) studies respectively.The 1997 survey was the first to collect primarily data on skills using the job requirements approach. This focused on collecting data on objective indicators of job skill as reported by respondents. The 2001 survey assessed how much had changed between the two surveys and a third survey in 2006 enhanced the time series data, while providing a resource for analysing skill and job requirements in the British economy at that time. The 2012 survey aimed to again add to the time series data and, coinciding as it did with a period of economic recession, to provide insight into whether workers in Britain felt under additional pressure/demand from employers as a result of redundancies and cut backs. In addition, a series dataset, covering 1986, 1992, 1997, 2001, 2006 and 2012 is also available . A follow-up to the 2012 survey was conducted in 2014, revisiting respondents who had agreed to be interviewed again. The 2017 survey was the seventh in the series, designed to examine to what extent pressures had continued as a result of austerity and economic uncertainties triggered, for example, by Brexit as well as examining additional issues such as productivity, fairness at work and the retirement intentions of older workers.Each survey comprises a large number of respondents: 4,047 in the 1986 survey; 3,855 in 1992; 2,467 in 1997; 4,470 in 2001; 7,787 in 2006; 3,200 in 2012; and 3,306 in 2017. The Skills Survey, 1997 was carried out in 1997 as part of the ESRC’s ‘Learning Society’ programme of research, was designed to extend the evidence about trends over time in ‘broad skills’ such as the qualifications required for job entry, the length of time it takes to train and the period taken to learn to do a job well. The Skills Survey, 1997 had the following objectives:to develop further the concept of and methodology for measuring different types of skills using an individual-based surveyto investigate the impact of various antecedents on skills, including personal characteristics and, especially, forms of education and trainingto investigate the impact of the possession of various skills on payto investigate which skills are changing during the 1990s, and to what extentto investigate how skills are distributed among the employed population and how far the pattern of skill and skill change corresponds to a learning society, and consider appropriate policy conclusions Main Topics: The dataset contains information on people in work and their jobs. The topic areas covered include:job detailsjob analysisattitudes and management skillscompetencetransferability of skills, pay and qualificationsjob held five years agodemographics Multi-stage stratified random sample Face-to-face interview
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus disease 2019 (COVID-19) time series listing confirmed cases, reported deaths and reported recoveries. Data is disaggregated by country (and sometimes subregion). Coronavirus disease (COVID-19) is caused by the Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) and has had a worldwide effect. On March 11 2020, the World Health Organization (WHO) declared it a pandemic, pointing to the over 118,000 cases of the Coronavirus illness in over 110 countries and territories around the world at the time.
This dataset includes time series data tracking the number of people affected by COVID-19 worldwide, including:
Abstract copyright UK Data Service and data collection copyright owner.The Active Lives Children and Young People Survey, which was established in September 2017, provides a world-leading approach to gathering data on how children engage with sport and physical activity. This school-based survey is the first and largest established physical activity survey with children and young people in England. It gives anyone working with children aged 5-16 key insight to help understand children's attitudes and behaviours around sport and physical activity. The results will shape and influence local decision-making as well as inform government policy on the PE and Sport Premium, Childhood Obesity Plan and other cross-departmental programmes. More general information about the study can be found on the Sport England Active Lives Survey webpage and the Active Lives Online website, including reports and data tables. Due to the closure of school sites during the coronavirus pandemic, the Active Lives Children and Young People survey was adapted to allow at-home completion. This approach was retained into the academic year 2022-23 to help maximise response numbers. The at-home completion approach was actively offered for secondary school pupils, and allowed but not encouraged for primary pupils. The adaptions involved minor questionnaire changes (e.g., to ensure the wording was appropriate for those not attending school and enabling completion at home) and communication changes. For further details on the survey changes, please see the accompanying User Guide document. Academic years 2020-21, 2021-22 and 2022-23 saw a more even split of responses by term across the year, compared to 2019-20, which had a reduced proportion of summer term responses due to the disruption caused by Covid-19. The survey identifies how participation varies across different activities and sports, by regions of England, between school types and terms, and between different demographic groups in the population. The survey measures levels of activity (active, fairly active and less active), attitudes towards sport and physical activity, swimming capability, the proportion of children and young people that volunteer in sport, sports spectating, and wellbeing measures such as happiness and life satisfaction. The questionnaire was designed to enable analysis of the findings by a broad range of variables, such as gender, family affluence and school year. The following datasets have been provided: 1) Main dataset: this file includes responses from children and young people from school years 3 to 11, as well as responses from parents of children in years 1-2. The parents of children in years 1-2 provide behavioural answers about their child’s activity levels; they do not provide attitudinal information. Using this main dataset, full analyses can be carried out into sports and physical activity participation, levels of activity, volunteering (years 5 to 11), etc. Weighting is required when using this dataset (wt_gross / wt_gross - Csplan files are available for SPSS users who can utilise them). 2) Year 1-2 dataset: This file includes responses directly from children in school years 1-2, providing their attitudinal responses (e.g., whether they like playing sport and find it easy). Analysis can also be carried out into feelings towards swimming, enjoyment of being active, happiness, etc. Weighting is required when using this dataset (wt_gross / wt_gross - Csplan files are available for SPSS users who can utilise them). 3) Teacher dataset: This file includes responses from the teachers at schools selected for the survey. Analysis can be carried out to determine school facilities available, the length of PE lessons, whether swimming lessons are offered, etc. Since December 2023, Sport England has provided weighting for the teacher data (‘wt_teacher’ weighting variable). For further information, please read the supporting documentation before using the datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The OSDG Community Dataset (OSDG-CD) is a public dataset of thousands of text excerpts, which were validated by over 1,400 OSDG Community Platform (OSDG-CP) citizen scientists from over 140 countries, with respect to the Sustainable Development Goals (SDGs).
Dataset Information
In support of the global effort to achieve the Sustainable Development Goals (SDGs), OSDG is realising a series of SDG-labelled text datasets. The OSDG Community Dataset (OSDG-CD) is the direct result of the work of more than 1,400 volunteers from over 130 countries who have contributed to our understanding of SDGs via the OSDG Community Platform (OSDG-CP). The dataset contains tens of thousands of text excerpts (henceforth: texts) which were validated by the Community volunteers with respect to SDGs. The data can be used to derive insights into the nature of SDGs using either ontology-based or machine learning approaches.
📘 The file contains 43,0210 (+390) text excerpts and a total of 310,328 (+3,733) assigned labels.
To learn more about the project, please visit the OSDG website and the official GitHub page. Explore a detailed overview of the OSDG methodology in our recent paper "OSDG 2.0: a multilingual tool for classifying text data by UN Sustainable Development Goals (SDGs)".
Source Data
The dataset consists of paragraph-length text excerpts derived from publicly available documents, including reports, policy documents and publication abstracts. A significant number of documents (more than 3,000) originate from UN-related sources such as SDG-Pathfinder and SDG Library. These sources often contain documents that already have SDG labels associated with them. Each text is comprised of 3 to 6 sentences and is about 90 words on average.
Methodology
All the texts are evaluated by volunteers on the OSDG-CP. The platform is an ambitious attempt to bring together researchers, subject-matter experts and SDG advocates from all around the world to create a large and accurate source of textual information on the SDGs. The Community volunteers use the platform to participate in labelling exercises where they validate each text's relevance to SDGs based on their background knowledge.
In each exercise, the volunteer is shown a text together with an SDG label associated with it – this usually comes from the source – and asked to either accept or reject the suggested label.
There are 3 types of exercises:
All volunteers start with the mandatory introductory exercise that consists of 10 pre-selected texts. Each volunteer must complete this exercise before they can access 2 other exercise types. Upon completion, the volunteer reviews the exercise by comparing their answers with the answers of the rest of the Community using aggregated statistics we provide, i.e., the share of those who accepted and rejected the suggested SDG label for each of the 10 texts. This helps the volunteer to get a feel for the platform.
SDG-specific exercises where the volunteer validates texts with respect to a single SDG, e.g., SDG 1 No Poverty.
All SDGs exercise where the volunteer validates a random sequence of texts where each text can have any SDG as its associated label.
After finishing the introductory exercise, the volunteer is free to select either SDG-specific or All SDGs exercises. Each exercise, regardless of its type, consists of 100 texts. Once the exercise is finished, the volunteer can either label more texts or exit the platform. Of course, the volunteer can finish the exercise early. All progress is saved and recorded still.
To ensure quality, each text is validated by up to 9 different volunteers and all texts included in the public release of the data have been validated by at least 3 different volunteers.
It is worth keeping in mind that all exercises present the volunteers with a binary decision problem, i.e., either accept or reject a suggested label. The volunteers are never asked to select one or more SDGs that a certain text might relate to. The rationale behind this set-up is that asking a volunteer to select from 17 SDGs is extremely inefficient. Currently, all texts are validated against only one associated SDG label.
Column Description
doi - Digital Object Identifier of the original document
text_id - unique text identifier
text - text excerpt from the document
sdg - the SDG the text is validated against
labels_negative - the number of volunteers who rejected the suggested SDG label
labels_positive - the number of volunteers who accepted the suggested SDG label
agreement - agreement score based on the formula (agreement = \frac{|labels_{positive} - labels_{negative}|}{labels_{positive} + labels_{negative}})
Further Information
Do not hesitate to share with us your outputs, be it a research paper, a machine learning model, a blog post, or just an interesting observation. All queries can be directed to community@osdg.ai.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?