Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes
Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status
Dataset and data visualization details:
These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.
Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.
Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.
Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be updated as more jurisdictions participate.
Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with at least a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6-12 months, half of the single-year population counts for ages <12 months were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred.
Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage.
Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated without an updated (bivalent) booster dose) or vaccinated with an updated (bivalent) booster dose.
Archive: An archive of historic data, including April 3, 2021-September 24, 2022 and posted on October 21, 2022 is available on data.cdc.gov. The analysis by vaccination status (unvaccinated and at least a primary series) for 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a. The analysis for one booster dose (unvaccinated, primary series only, and at least one booster dose) in 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm. The analysis for two booster doses (unvaccinated, primary series only, one booster dose, and at least two booster doses) in 28 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k.
References
Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290.
Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152
Facebook
TwitterThe first case of COVID-19 in Mexico was detected on March 1, 2020. By the end of the year, the total number of confirmed infections had surpassed 1.4 million. Meanwhile, the number of deaths related to the disease was nearing 148,000. On May 11, 2025, the number of cases recorded had reached 7.6 million, while the number of deaths amounted to around 335,000. The relevance of the Omicron variant Omicron, a highly contagious COVID-19 variant, was declared of concern by the World Health Organization (WHO) at the end of November 2021. As the pandemic unfolded, it became the variant with the highest share of COVID-19 cases in the world. In Latin America, countries such as Colombia, Argentina, Brazil, and Mexico were strongly affected. In fact, by 2023 nearly all analyzed sequences within these countries corresponded to an Omicron subvariant. Beyond a health crisis As the COVID-19 pandemic progressed worldwide, the respiratory disease caused by the virus SARS-CoV-2 virus first detected in Wuhan brought considerable economic consequences for countries and households. While Mexico’s gross domestic product (GDP) in current prices declined in 2020 compared to the previous year, a survey conducted among adults during the first months of 2021 showed COVID-19 impacted families mainly through finances and employment, with around one third of households in Mexico reporting an income reduction and the same proportion having at least one household member suffering from the disease.Find the most up-to-date information about the coronavirus pandemic in the world under Statista’s COVID-19 facts and figures site.
Facebook
TwitterCOVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mexico, one of the countries severely affected by COVID-19, accumulated more than 5. 1 all-cause excess deaths/1,000 inhabitants and 2.5 COVID-19 confirmed deaths/1,000 inhabitants, in 2 years. In this scenario of high SARS-CoV-2 circulation, we analyzed the effectiveness of the country's vaccination strategy that used 7 different vaccines from around the world, and focused on vaccinating the oldest population first. We analyzed the national dataset published by Mexican health authorities, as a retrospective cohort, separating cases, hospitalizations, deaths and excess deaths by wave and age group. We explored if the vaccination strategy was effective to limit severe COVID-19 during the active outbreaks caused by Delta and Omicron variants. Vaccination of the eldest third of the population reduced COVID-19 hospitalizations, deaths and excess deaths by 46–55% in the third wave driven by Delta SARS-CoV-2. These adverse outcomes dropped 74–85% by the fourth wave driven by Omicron, when all adults had access to vaccines. Vaccine access for the pregnant resulted in 85–90% decrease in COVID-19 fatalities in pregnant individuals and 80% decrease in infants 0 years old by the Omicron wave. In contrast, in the rest of the pediatric population that did not access vaccination before the period analyzed, COVID-19 hospitalizations increased >40% during the Delta and Omicron waves. Our analysis suggests that the vaccination strategy in Mexico has been successful to limit population mortality and decrease severe COVID-19, but children in Mexico still need access to SARS-CoV-2 vaccines to limit severe COVID-19, in particular those 1–4 years old.
Facebook
TwitterPeru is the country with the highest mortality rate due to the coronavirus disease (COVID-19) in Latin America. As of November 13, 2023, the country registered over 672 deaths per 100,000 inhabitants. It was followed by Brazil, with around 331.5 fatal cases per 100,000 population. In total, over 1.76 million people have died due to COVID-19 in Latin America and the Caribbean.
Are these figures accurate? Although countries like Brazil already rank among the countries most affected by the coronavirus disease (COVID-19), there is still room to believe that the number of cases and deaths in Latin American countries are underreported. The main reason is the relatively low number of tests performed in the region. For example, Brazil, one of the most impacted countries in the world, has performed approximately 63.7 million tests as of December 22, 2022. This compared with over one billion tests performed in the United States, approximately 909 million tests completed in India, or around 522 million tests carried out in the United Kingdom.
Capacity to deal with the outbreak With the spread of the Omicron variant, the COVID-19 pandemic is putting health systems around the world under serious pressure. The lack of equipment to treat acute cases, for instance, is one of the problems affecting Latin American countries. In 2019, the number of ventilators in hospitals in the most affected countries ranged from 25.23 per 100,000 inhabitants in Brazil to 5.12 per 100,000 people in Peru.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Daily updates of Covid-19 Global Excess Deaths from the Economist's GitHub repository: https://github.com/TheEconomist/covid-19-the-economist-global-excess-deaths-model
Interpreting estimates
Estimating excess deaths for every country every day since the pandemic began is a complex and difficult task. Rather than being overly confident in a single number, limited data means that we can often only give a very very wide range of plausible values. Focusing on central estimates in such cases would be misleading: unless ranges are very narrow, the 95% range should be reported when possible. The ranges assume that the conditions for bootstrap confidence intervals are met. Please see our tracker page and methodology for more information.
New variants
The Omicron variant, first detected in southern Africa in November 2021, appears to have characteristics that are different to earlier versions of sars-cov-2. Where this variant is now dominant, this change makes estimates uncertain beyond the ranges indicated. Other new variants may do the same. As more data is incorporated from places where new variants are dominant, predictions improve.
Non-reporting countries
Turkmenistan and the Democratic People's Republic of Korea have not reported any covid-19 figures since the start of the pandemic. They also have not published all-cause mortality data. Exports of estimates for the Democratic People's Republic of Korea have been temporarily disabled as it now issues contradictory data: reporting a significant outbreak through its state media, but zero confirmed covid-19 cases/deaths to the WHO.
Acknowledgements
A special thanks to all our sources and to those who have made the data to create these estimates available. We list all our sources in our methodology. Within script 1, the source for each variable is also given as the data is loaded, with the exception of our sources for excess deaths data, which we detail in on our free-to-read excess deaths tracker as well as on GitHub. The gradient booster implementation used to fit the models is aGTBoost, detailed here.
Calculating excess deaths for the entire world over multiple years is both complex and imprecise. We welcome any suggestions on how to improve the model, be it data, algorithm, or logic. If you have one, please open an issue.
The Economist would also like to acknowledge the many people who have helped us refine the model so far, be it through discussions, facilitating data access, or offering coding assistance. A special thanks to Ariel Karlinsky, Philip Schellekens, Oliver Watson, Lukas Appelhans, Berent Å. S. Lunde, Gideon Wakefield, Johannes Hunger, Carol D'Souza, Yun Wei, Mehran Hosseini, Samantha Dolan, Mollie Van Gordon, Rahul Arora, Austin Teda Atmaja, Dirk Eddelbuettel and Tom Wenseleers.
All coding and data collection to construct these models (and make them update dynamically) was done by Sondre Ulvund Solstad. Should you have any questions about them after reading the methodology, please open an issue or contact him at sondresolstad@economist.com.
Suggested citation The Economist and Solstad, S. (corresponding author), 2021. The pandemic’s true death toll. [online] The Economist. Available at: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates [Accessed ---]. First published in the article "Counting the dead", The Economist, issue 20, 2021.
Facebook
TwitterAs of March 9, 2023, Indonesia registered 160,941 deaths from the coronavirus. This week, Indonesia is experiencing an increase in cases caused by the highly-contagious Omicron variant.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe Omicron variant of SARS-CoV-2 is more highly infectious and transmissible than prior variants of concern. It was unclear which factors might have contributed to the alteration of COVID-19 cases and deaths during the Delta and Omicron variant periods. This study aimed to compare the COVID-19 average weekly infection fatality rate (AWIFR), investigate factors associated with COVID-19 AWIFR, and explore the factors linked to the increase in COVID-19 AWIFR between two periods of Delta and Omicron variants.Materials and methodsAn ecological study has been conducted among 110 countries over the first 12 weeks during two periods of Delta and Omicron variant dominance using open publicly available datasets. Our analysis included 102 countries in the Delta period and 107 countries in the Omicron period. Linear mixed-effects models and linear regression models were used to explore factors associated with the variation of AWIFR over Delta and Omicron periods.FindingsDuring the Delta period, the lower AWIFR was witnessed in countries with better government effectiveness index [β = −0.762, 95% CI (−1.238)–(−0.287)] and higher proportion of the people fully vaccinated [β = −0.385, 95% CI (−0.629)–(−0.141)]. In contrast, a higher burden of cardiovascular diseases was positively associated with AWIFR (β = 0.517, 95% CI 0.102–0.932). Over the Omicron period, while years lived with disability (YLD) caused by metabolism disorders (β = 0.843, 95% CI 0.486–1.2), the proportion of the population aged older than 65 years (β = 0.737, 95% CI 0.237–1.238) was positively associated with poorer AWIFR, and the high proportion of the population vaccinated with a booster dose [β = −0.321, 95% CI (−0.624)–(−0.018)] was linked with the better outcome. Over two periods of Delta and Omicron, the increase in government effectiveness index was associated with a decrease in AWIFR [β = −0.438, 95% CI (−0.750)–(−0.126)]; whereas, higher death rates caused by diabetes and kidney (β = 0.472, 95% CI 0.089–0.855) and percentage of population aged older than 65 years (β = 0.407, 95% CI 0.013–0.802) were associated with a significant increase in AWIFR.ConclusionThe COVID-19 infection fatality rates were strongly linked with the coverage of vaccination rate, effectiveness of government, and health burden related to chronic diseases. Therefore, proper policies for the improvement of vaccination coverage and support of vulnerable groups could substantially mitigate the burden of COVID-19.
Facebook
TwitterDuring the months December 2020, January 2021, and February 2021, COVID-19 was the leading cause of death in the United States based on the average number of daily deaths. Heart disease and cancer are usually the number one and number two leading causes of death, respectively. This statistic shows the average number of daily deaths in the United States among the leading causes of death from March 2020 to September 2022.
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Facebook
TwitterAs of August 28, 2023, the fatality rate of novel coronavirus (COVID-19) in South Korea stood at around 1.7 percent among people aged 80 year and older. This made them the most vulnerable age group, followed by people in their seventies. After the first wave lasted till April and the second wave in August 2020, Korea faced a fourth wave fueled by the delta and omicron variants in 2022.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterObjectives This study aimed to evaluate the clinical efficacy of Paxlovid in patients hospitalized with severe/critical COVID-19. Methods Data were acquired from patients with severe/critical COVID-19 diagnosed between December 2022 and January 2023 at a medical center in China. Patients were divided into the Paxlovid treatment group and the conventional treatment group. The association between Paxlovid and all-cause mortality of patients during hospitalization was evaluated using the COX regression model and inverse probability weighting method, respectively. The secondary endpoint was the improvement in patients’ lung imaging findings 1 week later. The odds ratio (OR) was estimated using logistic regression. Results A total of 158 eligible patients were enrolled, including 50 in-hospital deaths (50/98) in the Paxlovid group and 28 (28/60) in the conventional treatment group. The corrected hazard ratio for death was 0.51 (95% CI: 0.28–0.94, p = 0.031) and the inverse probability-weight..., , , # Clinical Data of COVID-19 Infected Patients
https://doi.org/10.5061/dryad.m63xsj49r
the data were mainly acquired from a large medical center in China, where the diagnosis and treatment of critical illness is one of its strengths. Clinical data was obtained by searching in the electronic medical record system. Departments included in the search were where COVID-19 cases were centralized for treatment in our center, such as the respiratory department, the isolation wards for COVID-19 cases, and the intensive care unit (ICU). Clinical data from patients diagnosed with severe or critical COVID-19 infection were continuously collected and included in this study, with a time frame ranging from December 1, 2022, to January 15, 2023, during which the Omicron infection had peaked in mainland China.
The electronic medical records of patients eligible for inclusion in this hospital were analyzed, with...
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The WHO coronavirus (COVID-19) dashboard presents official daily counts of COVID-19 cases, deaths and vaccine utilization reported by countries, territories and areas. Through this dashboard, we aim to provide a frequently updated data visualization, data dissemination and data exploration resource, while linking users to other useful and informative resources.
Caution must be taken when interpreting all data presented, and differences between information products published by WHO, national public health authorities, and other sources using different inclusion criteria and different data cut-off times are to be expected. While steps are taken to ensure accuracy and reliability, all data are subject to continuous verification and change. All counts are subject to variations in case detection, definitions, laboratory testing, vaccination strategy, and reporting strategies.
© World Health Organization 2020, All rights reserved.
WHO supports open access to the published output of its activities as a fundamental part of its mission and a public benefit to be encouraged wherever possible. Permission from WHO is not required for the use of the WHO coronavirus disease (COVID-19) dashboard material or data available for download. It is important to note that:
WHO publications cannot be used to promote or endorse products, services or any specific organization.
WHO logo cannot be used without written authorization from WHO.
WHO provides no warranty of any kind, either expressed or implied. In no event shall WHO be liable for damages arising from the use of WHO publications.
For further information, please visit WHO Copyright, Licencing and Permissions.
Citation: WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020. Available online: https://covid19.who.int/
Daily cases start increasing suddenly just before the new year and there's a fear for the upcoming wave. Everybody starts to predict the peak cases in the 3rd wave and the date the peak will be reached. Assume you are in the 1st week of January 2022 and there's panic in the country, for the Omicron variant is said to be highly transmittable. Using your machine learning and deep learning skills, you have to create a model that predicts accurately the peak for the 3rd wave.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Analysis comparing the risk of coronavirus (COVID-19) death in people infected by Omicron and Delta variants, after adjusting for socio-demographic factors, vaccination status and health conditions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To describe the demographic/clinical characteristics, treatment patterns, and mortality among patients hospitalized with COVID-19 during Omicron predominance by immunocompromised and high-risk status. Retrospective observational study of patients hospitalized with COVID-19 between January 1, 2022 and November 30, 2022, using data from the Optum de-identified Clinformatics Data Mart Database. Patient demographic/clinical characteristics, treatments, mortality and costs, were assessed, during the emergence of BA.1 BA.4, BA.5, BA.2.12.1, BA.2.75, BQ.1, XBB Omicron viral subvariants. Overall, 43,123 patients were included, with a mean (standard deviation [SD]) age of 75.5 (12.4) years, 51.8% were female. Immunocompromised patients accounted for 36% of hospitalized patients while only 5.8% received any outpatient COVID-19 treatment within 30 days of hospital admission. The mean (SD) hospital length of stay was 7.9 (7.5) days with 15.5% mortality within 30 days of admission. Mean (SD) hospital costs were $33,975 ($26,392), and 30-day all-cause readmission was 15.1%. Patients with immunocompromised status and those with a higher number of high-risk conditions proceeded to have an elevated proportion of hospital readmissions and mortality within 30 days. Moreover, a higher proportion of mortality was observed during the BA.1 period (20.1%) relative to other variant periods (11.0%). COVID-19 imposed a large healthcare burden, particularly among immunocompromised patients and those with underlying high-risk conditions during Omicron period. Low utilization of outpatient COVID-19 treatments was observed in these high-risk populations eligible for treatment. Continued surveillance and research regarding COVID-19 variants and the impact of outpatient treatment options on high-risk patients is crucial to inform and guide public health action.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary data files Figure_1.xlsx and Figure_2.xlsx contain the model simulation outcomes for Figures 1 and 2 of Le Rutte, Shattock et al "Modelling the impact of Omicron and emerging variants on SARS-CoV-2 transmission and public health burden" (2022)
Figure 1: Peak daily hospital occupancy (number of beds per 100,000 population over the six-month simulation period) for three variant properties; infectivity (relative to Delta), immune evading capacity (%), and severity (relative to Delta)
Figure 2: Percentage of COVID-19 infections and deaths averted by third-dose vaccines for adults and vaccinating 5-11-year-olds with doses one and two.
Open access source-codes of the associated plotting functions are published here on Zenodo.
Open access source-codes for the OpenCOVID model of all analyses as presented in Le Rutte, Shattock et al. (2022) are publicly available at https://github.com/SwissTPH/OpenCOVID/tree/manuscript_december_2021/src.
Detailed model descriptions and model equations of individual-based transmission model OpenCOVID are described in Shattock et al. (2022) and Le Rutte, Shattock et al. (2022).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Omicron-1 COVID-19 is less invasive in the general population than previous viral variants. However, clinical course and outcome of hospitalised patients with SARS-CoV-2 pneumonia during the shift of the predominance from Delta to Omicron variants are not fully explored. During January 2022 consecutively hospitalised patients with SARS-CoV-2 pneumonia were analysed. SARS-CoV-2 variants were identified by a 2-step pre-screening protocol and randomly confirmed by whole genome sequencing analysis. Clinical, laboratory and treatment data split by type of variant were analysed along with logistic regression of factors associated to mortality. 150 patients [mean age (SD) 67.2(15.8) years, male 54%] were analysed. Compared to Delta (n = 46), Omicron-1 patients (n = 104) were older [mean age (SD): 69.5(15.4) vs 61.9(15.8) years, p = 0.007], with more comorbidities (89.4% vs 65.2%, p = 0.001), less obesity (BMI >30Kg/m2 in 24% vs 43.5%, p = 0.034) but higher vaccination rates for COVID-19 (52.9% vs 8.7%, p
Facebook
TwitterAs of June 7, 2022, there were 2,523,915 active coronavirus COVID-19 cases and a total of 3,090 deaths registered in Taiwan. Despite the island's proximity to the mainland China, Taiwan had managed to contain the virus before the outbreak of the Delta variant of COVID-19. The success was due to an effective disease control system developed from the experience in the SARS epidemic. The highly contagious Omicron variant had brought a spike in new infections in Taiwan since March 2022.
Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.