The novel coronavirus that originated in the Chinese city Wuhan - the capital of Hubei province - had killed 17,826 people in Greater China. As of June 7, 2022, there were 2,785,848 active cases with symptoms in the region.
How did it spread?
In late December 2019, the health authorities in Wuhan detected several pneumonia cases of unknown cause. Most of these patients had links to the Huanan seafood market. The virus then spread spread rapidly to other provinces when millions of Chinese migrant workers headed home for Chinese New Year celebrations. About five billion people left Wuhan before the start of the travel ban on January 23. Right before Chinese New Year, the central government decided to put Wuhan and other cities in Hubei province on lockdown. With further travel restrictions and cancellations of public celebration events, the number of infections surpassed 80 thousand by the end of February. On March 18, 2020, China reported no new local coronavirus COVID-19 transmissions for the first time after quarantine measures had been implemented. On March 31, 2020, the National Health Commission (NHC) in China announced that it would begin reporting the infection number of symptom-free individuals who tested positive for coronavirus. After no new deaths reported for first time, the Chinese government lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country.
What is COVID-19?
Coronaviruses originate in animals like camels, civets and bats and are usually not transmissible to humans. But when a coronavirus mutates, it can be passed from animals to humans. The new strain of coronavirus COVID-19 is one of the seven known coronaviruses that can infect humans causing fever and respiratory infections. China's National Health Commission has confirmed the virus can be transmitted between humans through direct contact, airborne droplets. Faecal-oral transmission could also be possible. Although the death toll of COVID-19 has surpassed that of SARS, its fatality rate is relatively low compared to other deadly coronavirus, such as SARS and MERS.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: The outbreak of novel coronavirus disease 2019 (COVID-19) started in the city of Wuhan, China, with a period of rapid initial spread. Transmission on a regional and then national scale was promoted by intense travel during the holiday period of the Chinese New Year. We studied the variation in transmission of COVID-19, locally in Wuhan, as well as on a larger spatial scale, among different cities and even among provinces in mainland China.Methods: In addition to reported numbers of new cases, we have been able to assemble detailed contact data for some of the initial clusters of COVID-19. This enabled estimation of the serial interval for clinical cases, as well as reproduction numbers for small and large regions.Findings: We estimated the average serial interval was 4.8 days. For early transmission in Wuhan, any infectious case produced as many as four new cases, transmission outside Wuhan was less intense, with reproduction numbers below two. During the rapid growth phase of the outbreak the region of Wuhan city acted as a hot spot, generating new cases upon contact, while locally, in other provinces, transmission was low.Interpretation: COVID-19 is capable of spreading very rapidly. The sizes of outbreak in provinces of mainland China mainly depended on the numbers of cases imported from Wuhan as the local reproduction numbers were low. The COVID-19 epidemic should be controllable with appropriate interventions (suspension of public transportation, cancellation of mass gatherings, implementation of surveillance and testing, and promotion of personal hygiene and face mask use).
The new SARS-like coronavirus has spread around China since its outbreak in Wuhan - the capital of central China’s Hubei province. As of June 7, 2022, there were 2,785,848 active cases with symptoms in Greater China. The pandemic has caused a significant impact in the country's economy.
Fast-moving epidemic
In Wuhan, over 3.8 thousand deaths were registered in the heart of the outbreak. The total infection number surged on February 12, 2020 in Hubei province. After a change in official methodology for diagnosing and counting cases, thousands of new cases were added to the total figure. There is little knowledge about how the virus that originated from animals transferred to humans. While human-to-human transmission has been confirmed, other transmission routes through aerosol and fecal-oral are also possible. The deaths from the current virus COVID-19 (formally known as 2019-nCoV) has surpassed the toll from the SARS epidemic of 2002 and 2003.
Key moments in the Chinese coronavirus timeline
The doctor in Wuhan, Dr. Li Wenliang, who first warned about the new strain of coronavirus was silenced by the police. It was announced on February 7, 2020 that he died from the effects of the coronavirus infection. His death triggered a national backlash over freedom of speech on Chinese social media. On March 18, 2020, the Chinese government reported no new domestically transmissions for the first time after a series of quarantine and social distancing measures had been implemented. On March 31, 2020, the National Health Commission (NHC) in China started reporting the infection number of symptom-free individuals who tested positive for coronavirus. Before that, asymptomatic cases had not been included in the Chinese official count. China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country. On April 17, 2020, health authorities in Wuhan revised its death toll, adding some 1,290 fatalities in its total count.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The ER values for the epidemic of COVID-19 in Zhejiang Province using a range of distances and time intervals.
As of June 6, 2022, the novel coronavirus SARS-CoV-2 that originated in Wuhan, the capital of Hubei province in China, had infected over 2.1 million people and killed 14,612 in the country. Hong Kong is currently the region with the highest active cases in China.
From Wuhan to the rest of China
In late December 2019, health authorities in Wuhan detected several pneumonia cases of unknown cause. Most of these patients had links to the Huanan Seafood Market. With Chinese New Year approaching, millions of Chinese migrant workers travelled back to their hometowns for the celebration. Before the start of the travel ban on January 23, around five million people had left Wuhan. By the end of January, the number of infections had surged to over ten thousand. The death toll from the virus exceeded that of the SARS outbreak a few days later. On February 12, thousands more cases were confirmed in Wuhan after an improvement to the diagnosis method, resulting in another sudden surge of confirmed cases. On March 31, 2020, the National Health Commission (NHC) in China announced that it would begin reporting the infection number of symptom-free individuals who tested positive for coronavirus. On April 17, 2020, health authorities in Wuhan revised its death toll, adding 50 percent more fatalities. After quarantine measures were implemented, the country reported no new local coronavirus COVID-19 transmissions for the first time on March 18, 2020.
The overloaded healthcare system
In Wuhan, 28 hospitals were designated to treat coronavirus patients, but the outbreak continued to test China’s disease control system and most of the hospitals were soon fully occupied. To combat the virus, the government announced plans to build a new hospital swiftly. On February 3, 2020, Huoshenshan Hospital was opened to provide an additional 1,300 beds. Due to an extreme shortage of health-care professionals in Wuhan, thousands of medical staff from all over China came voluntarily to the epicenter to offer their support. After no new deaths reported for first time, China lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Since it was first identified, the epidemic scale of the recently emerged novel coronavirus (2019-nCoV) in Wuhan, China, has increased rapidly, with cases arising across China and other countries and regions. Using a transmission model, we estimate a basic reproductive number of 3.11 (95% CI, 2.39–4.13), indicating that 58–76% of transmissions must be prevented to stop increasing. We also estimate a case ascertainment rate in Wuhan of 5.0% (95% CI, 3.6–7.4). The true size of the epidemic may be significantly greater than the published case counts suggest, with our model estimating 21 022 (prediction interval, 11 090–33 490) total infections in Wuhan between 1 and 22 January. We discuss our findings in the light of more recent information.This article is part of the theme issue ‘Modelling that shaped the early COVID-19 pandemic response in the UK’.
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
This phylogeny shows evolutionary relationships of hCoV-19 (or SARS-CoV-2) viruses from the ongoing novel coronavirus COVID-19 pandemic. This phylogeny shows an initial emergence in Wuhan, China, in Nov-Dec 2019 followed by sustained human-to-human transmission leading to sampled infections. Although the genetic relationships among sampled viruses are quite clear, there is considerable uncertainty surrounding estimates of specific transmission dates and in reconstruction of geographic spread. Please be aware that specific inferred transmission patterns are only a hypothesis.
This work is made possible by the open sharing of genetic data by research groups from all over the world.
Data Downloaded from https://nextstrain.org/ncov/global
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Novel coronavirus (COVID-19) is a new strain of coronavirus first identified in Wuhan, China. As the virus has spread worldwide, China has reduced transmission at a considerable social and economic cost. To minimize the harm to society caused by the lockdown, resuming work safely post-pandemic is a major issue. As the capital of China, Beijing hosts many residents and workers with origins elsewhere, making it a high-risk region in which to resume work. To avoid a second significant outbreak of COVID-19, we simulate the evolution of the pandemic under different stages of resuming work. The transmission model is developed from a modified SEIR model for SARS tailored to the situation of Beijing with the involvement of multi-source data. Because of the strong heterogeneity of population, socio-economic factors and medical capacity of Beijing, the risk assessment is produced spatiotemporally with respect to each district of Beijing. The result suggests that resuming work step by step in Beijing would not bring about a recurrence of the pandemic. However, at different stages of resuming work, special attention should be paid to different parts in Beijing. The proposed relevant pandemic-prevention measures will provide valuable insights for other cities or regions dealing with the outbreak of COVID-19.
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019. The disease has since spread worldwide, leading to an ongoing pandemic.
Symptoms of COVID-19 are variable, but often include fever, cough, headache, fatigue, breathing difficulties, and loss of smell and taste. Symptoms may begin one to fourteen days after exposure to the virus. At least a third of people who are infected do not develop noticeable symptoms. Of those people who develop symptoms noticeable enough to be classed as patients, most (81%) develop mild to moderate symptoms (up to mild pneumonia), while 14% develop severe symptoms (dyspnea, hypoxia, or more than 50% lung involvement on imaging), and 5% suffer critical symptoms (respiratory failure, shock, or multiorgan dysfunction). Older people are at a higher risk of developing severe symptoms. Some people continue to experience a range of effects (long COVID) for months after recovery, and damage to organs has been observed. Multi-year studies are underway to further investigate the long-term effects of the disease.
COVID-19 transmits when people breathe in air contaminated by droplets and small airborne particles containing the virus. The risk of breathing these in is highest when people are in close proximity, but they can be inhaled over longer distances, particularly indoors. Transmission can also occur if splashed or sprayed with contaminated fluids in the eyes, nose, or mouth, and, rarely, via contaminated surfaces. People remain contagious for up to 20 days and can spread the virus even if they do not develop symptoms.
Several testing methods have been developed to diagnose the disease. The standard diagnostic method is by detection of the virus' nucleic acid by real-time reverse transcription-polymerase chain reaction (rRT-PCR), transcription-mediated amplification (TMA), or by reverse transcription loop-mediated isothermal amplification (RT-LAMP) from a nasopharyngeal swab.
Preventive measures include physical or social distancing, quarantining, ventilation of indoor spaces, covering coughs and sneezes, hand washing, and keeping unwashed hands away from the face. The use of face masks or coverings has been recommended in public settings to minimize the risk of transmissions.
While work is underway to develop drugs that inhibit the virus (and several vaccines for it have been approved and distributed in various countries, which have since initiated mass vaccination campaigns), the primary treatment is symptomatic. Management involves the treatment of symptoms, supportive care, isolation, and experimental measures.
Source - https://en.wikipedia.org/wiki/COVID-19
This Dataset is a collection of records for COVID-19 (World and Continent wise).
https://i.imgur.com/sbvsXhr.png" alt="">
This Dataset is created from: https://www.worldometers.info/. If you want to learn more, you can visit the Website.
Cover Photo by Hakan Nural on Unsplash
The outbreak of the novel coronavirus in Wuhan, China, saw infection cases spread throughout the Asia-Pacific region. By April 13, 2024, India had faced over 45 million coronavirus cases. South Korea followed behind India as having had the second highest number of coronavirus cases in the Asia-Pacific region, with about 34.6 million cases. At the same time, Japan had almost 34 million cases. At the beginning of the outbreak, people in South Korea had been optimistic and predicted that the number of cases would start to stabilize. What is SARS CoV 2?Novel coronavirus, officially known as SARS CoV 2, is a disease which causes respiratory problems which can lead to difficulty breathing and pneumonia. The illness is similar to that of SARS which spread throughout China in 2003. After the outbreak of the coronavirus, various businesses and shops closed to prevent further spread of the disease. Impacts from flight cancellations and travel plans were felt across the Asia-Pacific region. Many people expressed feelings of anxiety as to how the virus would progress. Impact throughout Asia-PacificThe Coronavirus and its variants have affected the Asia-Pacific region in various ways. Out of all Asia-Pacific countries, India was highly affected by the pandemic and experienced more than 50 thousand deaths. However, the country also saw the highest number of recoveries within the APAC region, followed by South Korea and Japan.
As of February 11, 2020, the fatality rate of novel coronavirus COVID-19 (formally known as 2019-nCoV) ranged around 2.3 percent in China. The figure was higher in Hubei province, which where Wuhan city located in, reaching approximately 2.9 percent. In April, the case fatality rate of COVID-19 increased to above four percent in the country.
What is COVID-19?
Coronaviruses (CoV) are a family of a hundred viruses which can lead to potentially deadly diseases in mammals and birds. Some of them can mutate and spread from animals to humans. Common transmission routes are airborne droplets and direct contact in humans, causing fever, respiratory infections and sometimes gastrointestinal problems. The new strain of coronavirus disease in 2019 (COVID-19) is one of the seven known coronaviruses, which can infect humans with an estimated incubation period between two and 14 days. Most of the early COVID-19 cases occurred among people with a median age of 55 years old, who had been to the Huanan seafood market in Wuhan.
Comparison with SARS and MERS
COVID-19 has become one of the largest epidemics in the world. SARS and MERS are other deadly coronaviruses. In 2002 and 2003, the outbreak of severe acute respiratory syndrome (SARS) killed almost 800 people after its emergence in southern China. This was mostly in mainland China and Hong Kong. Another major virus crisis was the Middle East respiratory syndrome (MERS), which was first identified in Saudi Arabia in 2012. The virus spread to 27 countries, resulting in nearly 860 deaths. In terms of mortality rates, MERS was much higher than SARS.
Outbreaks of emerging coronaviruses in the past two decades and the current pandemic of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this viral family as a zoonotic public health threat. To gain a better understanding of coronavirus presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus sequences. In comparison to previous studies, we observed high proportions of positive samples among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the odds of coronavirus RNA detection significantly increased along the supply chain from field rats sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 84/151). Coronaviruses were also detected in rodents on the majority of wildlife farms sampled (60.7%, 17/28). These coronaviruses were found in the Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are raised on wildlife farms for human consumption as food. We identified six known coronaviruses in bats and rodents, clustered in three Coronaviridae genera, including the Alpha-, Beta-, and Gammacoronaviruses. Our analysis also suggested either mixing of animal excreta in the environment or interspecies transmission of coronaviruses, as both bat and avian coronaviruses were detected in rodent feces on wildlife farms. The mixing of multiple coronaviruses, and their apparent amplification along the wildlife supply chain into restaurants, suggests maximal risk for end consumers and likely underpins the mechanisms of zoonotic spillover to people.
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The modularity of the subcommunity of the COVID-19 clusters in Zhejiang Province.
SummaryThe number of cases interviewed who had a completed answer to the question asking if they attended any gatherings of more than 10 people in the 14 days before they became ill (or had a positive test) during their covidLINK interviews.DescriptionMD COVID-19 - Contact Tracing Cases Social Gatherings of More than 10 People layer reflects the number of cases interviewed who had a completed answer to the question asking if they attended any gatherings of more than 10 people in the 14 days before they became ill (or had a positive test) during their covidLINK interviews. Respondents may indicate that they attended more than one category of social gathering. For a variety of reasons, some individuals choose not to answer particular questions during the course of their interview.Events and locations where there is prolonged exposure to other people — including weddings, parties, stores, restaurants, etc. — are considered “high risk” for COVID-19 transmission. The more interaction at a gathering or location, the more likely a person may be to transmit or become infected with the virus. More information about considerations for events and gatherings — including how to assess risk levels and promote healthy behaviors that reduce spread — is available from the Centers for Disease Control and Prevention.Answers to interview questions do not provide evidence of cause and effect. Due to the nature of COVID-19 and the wide range of scenarios in which a person can become infected, most of the time it will not be possible to pinpoint exactly where and when a case became infected. Though a person may report attendance at a particular location, that does not mean that transmission happened at that location.The covidLINK interview questionnaire is updated as necessary to capture relevant information related to case exposure and potential onward transmission. These revisions should be taken into consideration when evaluating trends in case responses over time.COVID-19 is a disease caused by a respiratory virus first identified in Wuhan, Hubei Province, China in December 2019. COVID-19 is a new virus that hasn't caused illness in humans before. Worldwide, COVID-19 has resulted in thousands of infections, causing illness and in some cases death. Cases have spread to countries throughout the world, with more cases reported daily. The Maryland Department of Health reports daily on COVID-19 cases by county.
Following the emergence of a novel coronavirus (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics. In response, many European countries have implemented unprecedented non-pharmaceutical interventions such as closure of schools and national lock downs. We study the impact of major interventions across 11 European countries for the period from the start of COVID-19 until the 4th of May 2020 when lock downs started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks prior, allowing for the time lag between infection and death. We use partial pooling of information between countries with both individual and shared effects on the reproduction number. Pooling allows more information to be used, helps overcome data idiosyncrasies, and enables more timely estimates. Our model relies on fixed estimates of some epidemiological parameters such as the infection fatality rate, does not include importation or sub-national variation and assumes that changes in the reproduction number are an immediate response to interventions rather than gradual changes in behaviour. Amidst the ongoing pandemic, we rely on death data that is incomplete, with systematic biases in reporting, and subject to future consolidation. We estimate that, for all the countries we consider, current interventions have been sufficient to drive the reproduction number R_t below 1 (probability R_t < 1.0 is 99.9%) and achieve epidemic control. We estimate that, across all 11 countries between 12 and 15 million individuals have been infected with SARS-CoV-2 up to 4th May, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions and lock down in particular have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.
Between January and May 2020, it was estimated by the COVID-19 Genomics UK consortium that the coronavirus was brought into the United Kingdom on at least 1,356 different occasions. These importations each started a chain of transmission as the virus spread throughout the UK. In approximately 34 percent of cases, the start of the transmission line was attributable to inbound travel from Spain, followed by 28.5 percent virus introductions from Italy. Fewer than 0.1 percent of chains of transmission arrived directly from China, where the coronavirus originated. The latest number of cases in the UK can be found here. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Since it was first identified, the epidemic scale of the recently emerged novel coronavirus (2019-nCoV) in Wuhan, China, has increased rapidly, with cases arising across China and other countries and regions. Using a transmission model, we estimate a basic reproductive number of 3.11 (95% CI, 2.39–4.13), indicating that 58–76% of transmissions must be prevented to stop increasing. We also estimate a case ascertainment rate in Wuhan of 5.0% (95% CI, 3.6–7.4). The true size of the epidemic may be significantly greater than the published case counts suggest, with our model estimating 21 022 (prediction interval, 11 090–33 490) total infections in Wuhan between 1 and 22 January. We discuss our findings in the light of more recent information.This article is part of the theme issue ‘Modelling that shaped the early COVID-19 pandemic response in the UK’.
SummaryThe number of cases interviewed who had a completed answer to the question asking if they visited or worked at any of a list of high risk locations in the 14 days before they became ill (or had a positive test) during their covidLINK interviews.DescriptionMD COVID-19 - Contact Tracing Cases High Risk Locations layer reflects the number of cases interviewed who had a completed answer to the question asking if they visited or worked at any of a list of high risk locations in the 14 days before they became ill (or had a positive test) during their covidLINK interviews. Respondents may indicate that they visited or worked at more than one category of high risk location. For a variety of reasons, some individuals choose not to answer particular questions during the course of their interview.Events and locations where there is prolonged exposure to other people — including weddings, parties, stores, restaurants, etc. — are considered “high risk” for COVID-19 transmission. The more interaction at a gathering or location, the more likely a person may be to transmit or become infected with the virus. More information about considerations for events and gatherings — including how to assess risk levels and promote healthy behaviors that reduce spread — is available from the Centers for Disease Control and Prevention.Answers to interview questions do not provide evidence of cause and effect. Due to the nature of COVID-19 and the wide range of scenarios in which a person can become infected, most of the time it will not be possible to pinpoint exactly where and when a case became infected. Though a person may report attendance at a particular location, that does not mean that transmission happened at that location.The covidLINK interview questionnaire is updated as necessary to capture relevant information related to case exposure and potential onward transmission. These revisions should be taken into consideration when evaluating trends in case responses over time.COVID-19 is a disease caused by a respiratory virus first identified in Wuhan, Hubei Province, China in December 2019. COVID-19 is a new virus that hasn't caused illness in humans before. Worldwide, COVID-19 has resulted in thousands of infections, causing illness and in some cases death. Cases have spread to countries throughout the world, with more cases reported daily. The Maryland Department of Health reports daily on COVID-19 cases by county.
SummaryThe number of cases interviewed who had a completed answer to the question asking if they had physically gone to work in the last 14 days during their covidLINK interviews.DescriptionMD COVID-19 - Contact Tracing Cases Reported Employment layer reflects the number of cases interviewed who had a completed answer to the question asking if they had physically gone to work in the last 14 days during their covidLINK interviews. Respondents may indicate more than one category of employment if they have multiple jobs. For a variety of reasons, some individuals choose not to answer particular questions during the course of their interview. Information about how to prevent and reduce COVID-19 transmission in businesses and workplaces — including for both employers and employees — is available from the Centers for Disease Control and Prevention.Note the following regarding select employment categories:Childcare/Education: Includes teachers, babysitters, school administrators, etc.Commercial Construction and Manufacturing: Includes poultry/meat processors, electricians, carpenters, HVAC workers, welders, contractors, paintersHealthcare: Includes home healthcare and administrative positions in a healthcare settingRestaurant/Food Service: Includes cooks, waitstaff, food delivery personnel, alcohol delivery services, etc.Retail, Essential Worker: Includes grocery and pharmacy workersRetail, Other: Includes all retail establishments that do not sell food or medicineTransportation: Includes positions related to transport of people or goodsOther, Non-Public-Facing: Includes workers that do not have direct interactions with the public, including warehouse workers, some office workers, some car mechanics, etc.Other, Public-Facing: Includes workers who have direct interactions with the public such as, but not limited to, administrative/front desk workers, home repair workers, lawncare workers, security guards, etc.Unknown: Indicates that the interviewer was unable to ascertain the employment category based on the information provided.Answers to interview questions do not provide strong evidence of cause and effect. Due to the nature of COVID-19 and the wide range of scenarios in which a person can become infected, most of the time it will not be possible to pinpoint exactly how and when a case became infected. Though a person may report employment at a particular location, that does not necessarily imply that transmission happened at that location.The covidLINK interview questionnaire is updated as necessary to capture relevant information related to case exposure and potential onward transmission. These revisions should be taken into consideration when evaluating trends in case responses over time.COVID-19 is a disease caused by a respiratory virus first identified in Wuhan, Hubei Province, China in December 2019. COVID-19 is a new virus that hasn't caused illness in humans before. Worldwide, COVID-19 has resulted in thousands of infections, causing illness and in some cases death. Cases have spread to countries throughout the world, with more cases reported daily. The Maryland Department of Health reports daily on COVID-19 cases by county.
The novel coronavirus that originated in the Chinese city Wuhan - the capital of Hubei province - had killed 17,826 people in Greater China. As of June 7, 2022, there were 2,785,848 active cases with symptoms in the region.
How did it spread?
In late December 2019, the health authorities in Wuhan detected several pneumonia cases of unknown cause. Most of these patients had links to the Huanan seafood market. The virus then spread spread rapidly to other provinces when millions of Chinese migrant workers headed home for Chinese New Year celebrations. About five billion people left Wuhan before the start of the travel ban on January 23. Right before Chinese New Year, the central government decided to put Wuhan and other cities in Hubei province on lockdown. With further travel restrictions and cancellations of public celebration events, the number of infections surpassed 80 thousand by the end of February. On March 18, 2020, China reported no new local coronavirus COVID-19 transmissions for the first time after quarantine measures had been implemented. On March 31, 2020, the National Health Commission (NHC) in China announced that it would begin reporting the infection number of symptom-free individuals who tested positive for coronavirus. After no new deaths reported for first time, the Chinese government lifted ten-week lockdown on Wuhan on April 8, 2020. Daily life was returning slowly back to normal in the country.
What is COVID-19?
Coronaviruses originate in animals like camels, civets and bats and are usually not transmissible to humans. But when a coronavirus mutates, it can be passed from animals to humans. The new strain of coronavirus COVID-19 is one of the seven known coronaviruses that can infect humans causing fever and respiratory infections. China's National Health Commission has confirmed the virus can be transmitted between humans through direct contact, airborne droplets. Faecal-oral transmission could also be possible. Although the death toll of COVID-19 has surpassed that of SARS, its fatality rate is relatively low compared to other deadly coronavirus, such as SARS and MERS.