100+ datasets found
  1. F

    Index of Common Stock Prices, New York Stock Exchange for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Index of Common Stock Prices, New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/M11007USM322NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about stock market, New York, indexes, and USA.

  2. Stock Market Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
    Explore at:
    zip(547714524 bytes)Available download formats
    Dataset updated
    Apr 2, 2020
    Authors
    Oleh Onyshchak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

    It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

    Data Structure

    The date for every symbol is saved in CSV format with common fields:

    • Date - specifies trading date
    • Open - opening price
    • High - maximum price during the day
    • Low - minimum price during the day
    • Close - close price adjusted for splits
    • Adj Close - adjusted close price adjusted for both dividends and splits.
    • Volume - the number of shares that changed hands during a given day

    All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

  3. Stock Prices Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Stock Prices Dataset [Dataset]. https://brightdata.com/products/datasets/financial/stock-price
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.

    Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.

  4. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Oct 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Oct 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Oct 16, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6695 points on October 16, 2025, gaining 0.37% from the previous session. Over the past month, the index has climbed 1.44% and is up 14.62% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on October of 2025.

  5. Stock Market Data Europe ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Europe ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-europe-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Europe, Italy, Andorra, Latvia, Belgium, Croatia, Denmark, Switzerland, Finland, Slovenia, Lithuania
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  6. šŸ¦Bank Stock PricešŸ¦

    • kaggle.com
    Updated Feb 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bryan Milleanno (2024). šŸ¦Bank Stock PricešŸ¦ [Dataset]. https://www.kaggle.com/datasets/brmil07/bank-stock-price
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 9, 2024
    Dataset provided by
    Kaggle
    Authors
    Bryan Milleanno
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains historical stock price data for major banks from the year 2014 to 2024. The dataset includes daily stock prices, trading volume, and other relevant financial metrics for prominent banks. The stock prices are provided in IDR (Indonesian Rupiah) currency.

    PT Bank Central Asia Tbk (BBCA.JK), more commonly recognized as Bank Central Asia (BCA). As one of Indonesia's largest privately-owned banks, BCA was founded in 1955 and provides a diverse array of banking services encompassing consumer banking, corporate banking, investment banking, and asset management. With a widespread presence throughout Indonesia, including numerous branches and ATMs, BCA is esteemed for its robust financial achievements, inventive banking offerings, and dedication to customer satisfaction.

    Dataset Variables:

    1. Date: The date of the stock price data.
    2. Open Price: The opening price of the bank's stock on the given date.
    3. Close Price: The closing price of the bank's stock on the given date.
    4. High Price: The highest price reached by the bank's stock during the trading day.
    5. Low Price: The lowest price reached by the bank's stock during the trading day.
    6. Adjusted Low Price: The closing price on a given trading day, adjusted to reflect any corporate actions, such as stock splits, dividends, rights offerings, or other adjustments that may affect the stock price.
    7. Volume: The number of shares traded on the given date.

    Data Sources: The dataset is compiled from reliable financial sources, including stock exchanges, financial news websites, and reputable financial data providers. Data cleaning and preprocessing techniques have been applied to ensure accuracy and consistency. More info: https://finance.yahoo.com/quote/BBCA.JK/history/

    Use Case: This dataset can be utilized for various purposes, including financial analysis, stock market forecasting, algorithmic trading strategies, and academic research. Researchers, analysts, and data scientists can explore the trends, patterns, and relationships within the data to derive valuable insights into the performance of the banking sector over the specified period. Additionally, this dataset can serve as a benchmark for evaluating the performance of machine learning models and quantitative trading strategies in the banking industry.

  7. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 15, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  8. US Equities Packages - Stock Prices & Fundamentals

    • datarade.ai
    Updated Dec 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intrinio (2021). US Equities Packages - Stock Prices & Fundamentals [Dataset]. https://datarade.ai/data-products/us-equities-packages-stock-prices-fundamentals-intrinio
    Explore at:
    Dataset updated
    Dec 26, 2021
    Dataset authored and provided by
    Intrinio
    Area covered
    United States
    Description

    We offer three easy-to-understand equity data packages to fit your business needs. Visit intrinio.com/pricing to compare packages.

    Bronze

    The Bronze package is ideal for developing your idea and prototyping your platform with high-quality EOD equity pricing data, standardized financial statement data, and supplementary fundamental datasets.

    When you’re ready for launch, it’s a seamless transition to our Silver package for additional data sets, 15-minute delayed equity pricing data, expanded history, and more.

    • Historical EOD equity prices & technicals (10 years history)
    • Security reference data
    • Standardized & as-reported financial statements (5 years history)
    • 7 supplementary fundamental data sets

    Bronze Benefits:

    • Web API access
    • 300 API calls/minute limit
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support

    Silver

    The Silver package is ideal for startups that are in development, testing, or in the beta launch phase. Hit the ground running with 15-minute delayed and historical intraday and EOD equity prices, plus our standardized and as-reported financial statement data with nine supplementary data sets, including insider transactions and institutional ownership.

    When you’re ready to scale, easily move up to the Gold package for our full range of data sets and full history, real-time equity pricing data, premium support options, and much more.

    • 15-minute delayed & historical intraday equity prices
    • Historical EOD equity prices & technicals (full history)
    • Security reference data
    • Standardized & as-reported financial statements (10 years history)
    • 9 supplementary fundamental data sets

    Silver Benefits:

    • Web API access
    • 2,000 API calls/minute limit
    • Access to third-party datasets via Intrinio API (additional fees required)
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support

    Gold

    The Gold package is ideal for funded companies that are in the growth or scaling stage, as well as institutions that are innovating within the fintech space. This full-service solution offers our complete collection of equity pricing data feeds, from real-time to historical EOD, plus standardized financial statement data and nine supplementary feeds.

    You’ll also have access to our wide range of modern access methods, third-party data via Intrinio’s API with licensing assistance, support from our team of expert engineers, custom delivery architectures, and much more.

    • Real-time equity prices
    • Historical intraday equity prices
    • Historical EOD equity prices & technicals (full history)
    • Security reference data
    • Standardized & as-reported financial statements (full history)
    • 9 supplementary fundamental data sets

    Gold Benefits:

    • No exchange fees
    • No user reporting or variable per-user exchange fees
    • High liquidity (6%+)
    • Web API & WebSocket access
    • 2,000 API calls/minute limit
    • Customizable access methods (Snowflake, FTP, etc.)
    • Access to third-party datasets via Intrinio API (additional fees required)
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support
    • Access to engineering team
    • Concierge customer success team
    • Comarketing & promotional initiatives

    Platinum

    Don’t see a package that fits your needs? Our team can design premium custom packages for institutions.

  9. F

    American Railroad Stock Prices for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). American Railroad Stock Prices for United States [Dataset]. https://fred.stlouisfed.org/series/M1105AUSM505NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for American Railroad Stock Prices for United States (M1105AUSM505NNBR) from Jan 1857 to Dec 1929 about railroad, equity, and USA.

  10. Tesla Stock Price Data (2014–2024)

    • kaggle.com
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Farhin Vasaya (2025). Tesla Stock Price Data (2014–2024) [Dataset]. https://www.kaggle.com/datasets/farhinvasaya/tesla-stocks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    Kaggle
    Authors
    Farhin Vasaya
    Description

    This dataset provides a decade of historical stock price data for Tesla, Inc., spanning from December 7, 2014, to December 5, 2024. It includes essential financial metrics that are valuable for trend analysis, forecasting, and machine learning projects.

  11. c

    Twitter Stocks Dataset

    • cubig.ai
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Twitter Stocks Dataset [Dataset]. https://cubig.ai/store/products/249/twitter-stocks-dataset
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Twitter Stock Prices Dataset contains stock price data for Twitter from November 2013 to October 2022. This dataset is a time series dataset that provides daily stock trading information. • The key attributes include the stock's opening price (Open), highest price (High), lowest price (Low), closing price (Close), adjusted closing price (Adj Close), and volume (Volume).

    2) Data Utilization (1) Characteristics of the Twitter Stock Prices Data • This dataset is a time series, offering daily stock price fluctuations and allows tracking of price changes over time. • It includes 7 main attributes related to stock trading, allowing for analysis of price movements (open, high, low, close) and volume, to better understand Twitter’s stock price dynamics. • This data helps analyze market trends, price volatility patterns, and price fluctuation analysis, providing insights into the dynamics of the stock market.

    (2) Applications of the Twitter Stock Prices Data • Predictive Modeling: This dataset can be used to develop stock price prediction models, including predicting price increases/decreases or forecasting future stock prices using machine learning models. • Business Insights: Investment experts can use this dataset to evaluate Twitter’s stock performance, and it provides useful information for optimizing investment strategies in response to market changes. This dataset can be used for trend forecasting and investor analysis. • Trend Analysis: By analyzing stock upward/downward trends, this dataset can help evaluate the company's market performance and develop trend-based investment strategies.

  12. Apple (AAPL) Stock Price Data (1980-2024)

    • kaggle.com
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taimoor Khurshid Chughtai (2025). Apple (AAPL) Stock Price Data (1980-2024) [Dataset]. https://www.kaggle.com/datasets/taimoor888/apple-aapl-stock-price-data-1980-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Taimoor Khurshid Chughtai
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains daily historical stock prices of Apple Inc. (AAPL) from its IPO launch (12 December 1980) to the latest available date (18 March 2025). The data has been collected using the Yahoo Finance API and includes key financial indicators such as Open, High, Low, Close, Adjusted Close, and Volume.

    Potential Uses: šŸ“ˆ Stock Market Analysis – Understand Apple’s price trends over decades. šŸ“Š Time Series Forecasting – Train models like LSTMs, ARIMA, Prophet, etc. šŸ¤– Machine Learning Applications – Build predictive models for future price movements. šŸ’° Investment Research – Analyze long-term growth patterns.

  13. NetFlix Stock Data

    • kaggle.com
    Updated Aug 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krupal Patel (2024). NetFlix Stock Data [Dataset]. https://www.kaggle.com/datasets/krupalpatel07/netflix-stock-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 4, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Krupal Patel
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Welcome to the Netflix Stock Prices and Performance Data dataset! This dataset is your go-to resource for analyzing the financial performance of Netflix, Inc. over time. Whether you’re a seasoned data scientist, a finance enthusiast, or a beginner looking to practice your time series analysis skills, this dataset provides all the key metrics you need.

    Date: The trading day (YYYY-MM-DD format) Open: Opening price of the stock on that day High: Highest price reached during the trading day Low: Lowest price reached during the trading day Close: Closing price of the stock on that day Volume: Number of shares traded Potential Uses:

    Trend Analysis: Examine how Netflix’s stock price has evolved over time and identify significant trends or events that impacted its performance.

    Technical Analysis: Apply various technical indicators to forecast future stock movements.

    Investment Strategy Development: Create and backtest trading strategies based on historical data.

    Correlation Studies: Compare Netflix’s stock performance with other stocks or indices to uncover correlations.

    Market Sentiment Analysis: Integrate with news or social media sentiment data to see how external factors influence stock prices.

  14. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. m

    Dhaka Stock Exchange Historical Data

    • data.mendeley.com
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tashreef Muhammad (2024). Dhaka Stock Exchange Historical Data [Dataset]. http://doi.org/10.17632/23553sm4tn.3
    Explore at:
    Dataset updated
    Mar 8, 2024
    Authors
    Tashreef Muhammad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dhaka
    Description

    The dataset contains historical technical data of Dhaka Stock Exchange (DSE). The data was collected from different sources found in the internet where the data was publicly available. The data available here are used for information and research purposes and though to the best of our knowledge, it does not contain any mistakes, there might still be some mistakes. It is not encourages to use this dataset for portfolio management purposes and use this dataset out of your own interest. The contributors do not hold any liability if it is used for any purposes.

  16. T

    Meta | FB - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Oct 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Meta | FB - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/fb:us
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Oct 6, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Oct 16, 2025
    Area covered
    United States
    Description

    Meta stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  17. T

    SYNNEX | SNX - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Feb 13, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). SYNNEX | SNX - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/snx:us
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Feb 13, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Oct 16, 2025
    Area covered
    United States
    Description

    SYNNEX stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  18. M

    U.S. - Railroad Stock Prices | Historical Chart | Data | 1855-1937

    • macrotrends.net
    csv
    Updated Oct 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). U.S. - Railroad Stock Prices | Historical Chart | Data | 1855-1937 [Dataset]. https://www.macrotrends.net/datasets/5338/us-railroad-stock-prices
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1855 - 1937
    Area covered
    United States
    Description

    U.S. - Railroad Stock Prices - Historical chart and current data through 1937.

  19. T

    DIA - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). DIA - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/dia:sm
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Oct 3, 2025
    Area covered
    Spain
    Description

    DIA stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  20. Stock-Prices

    • kaggle.com
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammed Aouamri (2024). Stock-Prices [Dataset]. https://www.kaggle.com/datasets/mohammedaouamri/stock-prices/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mohammed Aouamri
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Mohammed Aouamri

    Released under MIT

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2012). Index of Common Stock Prices, New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/M11007USM322NNBR

Index of Common Stock Prices, New York Stock Exchange for United States

M11007USM322NNBR

Explore at:
jsonAvailable download formats
Dataset updated
Aug 15, 2012
License

https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

Area covered
United States
Description

Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about stock market, New York, indexes, and USA.

Search
Clear search
Close search
Google apps
Main menu