100+ datasets found
  1. Stock Market Dataset

    • kaggle.com
    zip
    Updated Apr 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
    Explore at:
    zip(547714524 bytes)Available download formats
    Dataset updated
    Apr 2, 2020
    Authors
    Oleh Onyshchak
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

    It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

    Data Structure

    The date for every symbol is saved in CSV format with common fields:

    • Date - specifies trading date
    • Open - opening price
    • High - maximum price during the day
    • Low - minimum price during the day
    • Close - close price adjusted for splits
    • Adj Close - adjusted close price adjusted for both dividends and splits.
    • Volume - the number of shares that changed hands during a given day

    All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

  2. Stock Prices Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Stock Prices Dataset [Dataset]. https://brightdata.com/products/datasets/financial/stock-price
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.

    Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.

  3. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +11more
    csv, excel, json, xml
    Updated Sep 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Sep 12, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Sep 12, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, fell to 6583 points on September 12, 2025, losing 0.06% from the previous session. Over the past month, the index has climbed 1.80% and is up 17.01% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

  4. Stock Market Data Europe ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Europe ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-europe-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Slovenia, Croatia, Italy, Denmark, Andorra, Latvia, Lithuania, Finland, Belgium, Switzerland, Europe
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  5. h

    Stocks-Daily-Price

    • huggingface.co
    Updated Jul 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Papers With Backtest (2024). Stocks-Daily-Price [Dataset]. https://huggingface.co/datasets/paperswithbacktest/Stocks-Daily-Price
    Explore at:
    Dataset updated
    Jul 2, 2024
    Dataset authored and provided by
    Papers With Backtest
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Information

    This dataset includes daily price data for various stocks.

      Instruments Included
    

    7000+ US Stocks

      Dataset Columns
    

    symbol: The symbol of the stock. date: The date of the data. open: The opening price of the stock. high: The highest price of the stock. low: The lowest price of the stock. close: The closing price of the stock. volume: The volume of the stock. adj_close: The adjusted closing price of the stock.

      Data Splits
    

    The… See the full description on the dataset page: https://huggingface.co/datasets/paperswithbacktest/Stocks-Daily-Price.

  6. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Sep 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 12, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  7. F

    Index of Common Stock Prices, New York Stock Exchange for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Index of Common Stock Prices, New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/M11007USM322NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.

  8. c

    Twitter Stocks Dataset

    • cubig.ai
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Twitter Stocks Dataset [Dataset]. https://cubig.ai/store/products/249/twitter-stocks-dataset
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Twitter Stock Prices Dataset contains stock price data for Twitter from November 2013 to October 2022. This dataset is a time series dataset that provides daily stock trading information. • The key attributes include the stock's opening price (Open), highest price (High), lowest price (Low), closing price (Close), adjusted closing price (Adj Close), and volume (Volume).

    2) Data Utilization (1) Characteristics of the Twitter Stock Prices Data • This dataset is a time series, offering daily stock price fluctuations and allows tracking of price changes over time. • It includes 7 main attributes related to stock trading, allowing for analysis of price movements (open, high, low, close) and volume, to better understand Twitter’s stock price dynamics. • This data helps analyze market trends, price volatility patterns, and price fluctuation analysis, providing insights into the dynamics of the stock market.

    (2) Applications of the Twitter Stock Prices Data • Predictive Modeling: This dataset can be used to develop stock price prediction models, including predicting price increases/decreases or forecasting future stock prices using machine learning models. • Business Insights: Investment experts can use this dataset to evaluate Twitter’s stock performance, and it provides useful information for optimizing investment strategies in response to market changes. This dataset can be used for trend forecasting and investor analysis. • Trend Analysis: By analyzing stock upward/downward trends, this dataset can help evaluate the company's market performance and develop trend-based investment strategies.

  9. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. US Equities Packages - Stock Prices & Fundamentals

    • datarade.ai
    Updated Dec 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intrinio (2021). US Equities Packages - Stock Prices & Fundamentals [Dataset]. https://datarade.ai/data-products/us-equities-packages-stock-prices-fundamentals-intrinio
    Explore at:
    Dataset updated
    Dec 26, 2021
    Dataset authored and provided by
    Intrinio
    Area covered
    United States
    Description

    We offer three easy-to-understand equity data packages to fit your business needs. Visit intrinio.com/pricing to compare packages.

    Bronze

    The Bronze package is ideal for developing your idea and prototyping your platform with high-quality EOD equity pricing data, standardized financial statement data, and supplementary fundamental datasets.

    When you’re ready for launch, it’s a seamless transition to our Silver package for additional data sets, 15-minute delayed equity pricing data, expanded history, and more.

    • Historical EOD equity prices & technicals (10 years history)
    • Security reference data
    • Standardized & as-reported financial statements (5 years history)
    • 7 supplementary fundamental data sets

    Bronze Benefits:

    • Web API access
    • 300 API calls/minute limit
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support

    Silver

    The Silver package is ideal for startups that are in development, testing, or in the beta launch phase. Hit the ground running with 15-minute delayed and historical intraday and EOD equity prices, plus our standardized and as-reported financial statement data with nine supplementary data sets, including insider transactions and institutional ownership.

    When you’re ready to scale, easily move up to the Gold package for our full range of data sets and full history, real-time equity pricing data, premium support options, and much more.

    • 15-minute delayed & historical intraday equity prices
    • Historical EOD equity prices & technicals (full history)
    • Security reference data
    • Standardized & as-reported financial statements (10 years history)
    • 9 supplementary fundamental data sets

    Silver Benefits:

    • Web API access
    • 2,000 API calls/minute limit
    • Access to third-party datasets via Intrinio API (additional fees required)
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support

    Gold

    The Gold package is ideal for funded companies that are in the growth or scaling stage, as well as institutions that are innovating within the fintech space. This full-service solution offers our complete collection of equity pricing data feeds, from real-time to historical EOD, plus standardized financial statement data and nine supplementary feeds.

    You’ll also have access to our wide range of modern access methods, third-party data via Intrinio’s API with licensing assistance, support from our team of expert engineers, custom delivery architectures, and much more.

    • Real-time equity prices
    • Historical intraday equity prices
    • Historical EOD equity prices & technicals (full history)
    • Security reference data
    • Standardized & as-reported financial statements (full history)
    • 9 supplementary fundamental data sets

    Gold Benefits:

    • No exchange fees
    • No user reporting or variable per-user exchange fees
    • High liquidity (6%+)
    • Web API & WebSocket access
    • 2,000 API calls/minute limit
    • Customizable access methods (Snowflake, FTP, etc.)
    • Access to third-party datasets via Intrinio API (additional fees required)
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support
    • Access to engineering team
    • Concierge customer success team
    • Comarketing & promotional initiatives

    Platinum

    Don’t see a package that fits your needs? Our team can design premium custom packages for institutions.

  11. m

    Dhaka Stock Exchange Historical Data

    • data.mendeley.com
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tashreef Muhammad (2024). Dhaka Stock Exchange Historical Data [Dataset]. http://doi.org/10.17632/23553sm4tn.3
    Explore at:
    Dataset updated
    Mar 8, 2024
    Authors
    Tashreef Muhammad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dhaka
    Description

    The dataset contains historical technical data of Dhaka Stock Exchange (DSE). The data was collected from different sources found in the internet where the data was publicly available. The data available here are used for information and research purposes and though to the best of our knowledge, it does not contain any mistakes, there might still be some mistakes. It is not encourages to use this dataset for portfolio management purposes and use this dataset out of your own interest. The contributors do not hold any liability if it is used for any purposes.

  12. Stock-Prices

    • kaggle.com
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammed Aouamri (2024). Stock-Prices [Dataset]. https://www.kaggle.com/datasets/mohammedaouamri/stock-prices/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 21, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Mohammed Aouamri
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Mohammed Aouamri

    Released under MIT

    Contents

  13. T

    DIA - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). DIA - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/dia:sm
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Sep 3, 2025
    Area covered
    Spain
    Description

    DIA stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  14. Stock Prices

    • kaggle.com
    Updated Dec 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Om Rastogi (2020). Stock Prices [Dataset]. https://www.kaggle.com/omrastogi/stock-prices/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 31, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Om Rastogi
    Description

    Dataset

    This dataset was created by Om Rastogi

    Contents

  15. h

    airbnb-stock-price

    • huggingface.co
    Updated May 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Batte The Idiot (2024). airbnb-stock-price [Dataset]. https://huggingface.co/datasets/BatteRaquette58/airbnb-stock-price
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 11, 2024
    Authors
    Batte The Idiot
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Airbnb Stock Price dataset

    A simple dataset containing 746 rows of Airbnb's stock price.

      Dataset structure
    

    date (float64): Date of the stock price expressed as the epoch from 1/1/1970. open (float64): Price of the stock when the stock market opened. close_last (float64): Price of the stock when the stock market closed. volume (float64): Number of shares traded. high (float64): Highest price of the stock during the day. low (float64): Lowest price of the stock during the… See the full description on the dataset page: https://huggingface.co/datasets/BatteRaquette58/airbnb-stock-price.

  16. F

    American Railroad Stock Prices for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). American Railroad Stock Prices for United States [Dataset]. https://fred.stlouisfed.org/series/M11005USM293NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for American Railroad Stock Prices for United States (M11005USM293NNBR) from Jan 1855 to Jan 1937 about railroad, stock market, and USA.

  17. FTSE 100: Where to Next? (Forecast)

    • kappasignal.com
    Updated Apr 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). FTSE 100: Where to Next? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/ftse-100-where-to-next.html
    Explore at:
    Dataset updated
    Apr 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FTSE 100: Where to Next?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Sep 12, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Sep 11, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, rose to 7824 points on September 11, 2025, gaining 0.80% from the previous session. Over the past month, the index has climbed 0.90% and is up 5.22% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on September of 2025.

  19. J

    Jordan Stock price volatility - data, chart | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 25, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Jordan Stock price volatility - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Jordan/Stock_price_volatility/
    Explore at:
    excel, csv, xmlAvailable download formats
    Dataset updated
    Nov 25, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2000 - Dec 31, 2021
    Area covered
    Jordan
    Description

    Jordan: Stock price volatility, percent: The latest value from 2021 is 9.49 percent, an increase from 8.16 percent in 2020. In comparison, the world average is 20.14 percent, based on data from 87 countries. Historically, the average for Jordan from 2000 to 2021 is 11.49 percent. The minimum value, 5.62 percent, was reached in 2017 while the maximum of 24.67 percent was recorded in 2006.

  20. d

    Taiwan Cross-Market Index Historical Data of the Taiwan Stock Price Index

    • data.gov.tw
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Securities and Futures Bureau, Financial Supervisory Commission, Executive Yuan, R.O.C., Taiwan Cross-Market Index Historical Data of the Taiwan Stock Price Index [Dataset]. https://data.gov.tw/en/datasets/11669
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    Securities and Futures Bureau, Financial Supervisory Commission, Executive Yuan, R.O.C.
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Area covered
    Taiwan
    Description

    Taiwan Stock Exchange Historical Stock Price Index Data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Oleh Onyshchak (2020). Stock Market Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/1054465
Organization logo

Stock Market Dataset

Historical daily prices of Nasdaq-traded stocks and ETFs

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
zip(547714524 bytes)Available download formats
Dataset updated
Apr 2, 2020
Authors
Oleh Onyshchak
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Overview

This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.

It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.

Data Structure

The date for every symbol is saved in CSV format with common fields:

  • Date - specifies trading date
  • Open - opening price
  • High - maximum price during the day
  • Low - minimum price during the day
  • Close - close price adjusted for splits
  • Adj Close - adjusted close price adjusted for both dividends and splits.
  • Volume - the number of shares that changed hands during a given day

All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.

Search
Clear search
Close search
Google apps
Main menu