Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data were published in van Woesik & Cacciapaglia (2018), van Woesik & Cacciapaglia (2019), and van Woesik & Cacciapaglia (2021).
A question mark symbol (?) in the species column indicates that the fish could be identified as a parrotfish but the species could not be identified due to the camera angle. The species name followed by a question mark indicates the identification is uncertain due to the camera angle.
A question mark symbol (?) in the size column indicates the fish could not be accurately measured due to the camera angle.
A question mark symbol (?) in a comment column indicates the species name or size is questionable; the time on the video is recorded for the fish in question.
If a comment column contains a time notation (e.g. "01:00" or ":23"), it refers to the position in the video in minutes and seconds (mm:ss) or seconds (:ss) that the fish was identified.
For more information about the parrotfish species please refer to the Parrotfish species information dataset https://www.bco-dmo.org/dataset/735679.
This activity uses REEF data to examine parrotfish population trends. Students practice data management and visualization, develop research questions and critically evaluate citizen science methods. Data interpretation, critical thinking, and communication skills are emphasized.
Parrotfishes were surveyed using two different methods: the Reef Visual Census program (See Smith et al 2011 and Brandt et al 2009 and https://grunt.sefsc.noaa.gov/rvc_analysis20/ for more information about this program) has been conducting a visual survey of reef fish species throughout the Florida Keys since 1978. The roving diver survey (see Adam et al 2015) was used in 2013 to collect data on parrotfishes only at several reefs in the Upper Florida Keys. Both datasets provide information on number of parrotfishes per unit area in selected locations in the Florida Keys. Parrotfish foraging parameters were also derived from behavioral observations of parrotfish feeding. See Adam et al 2015, 2018 for more details.
in situ visual surveys of reproductive behavior, spawning and courtship events
Data associated with the publication 'Ecological drivers of parrotfish coral predation vary across spatial scales', comparing parrotfish coral predation intensity as it relates to parrotfish density/biomass, coral cover, and other ecological variables from the scale of individual coral colonies to reefs spanning four regions of the Greater Caribbean. This dataset includes several datasets: 1) regional_coral_scar_data.csv: Surveys of coral colonies (with and without parrotfish predation scars) across all regions. 2) processed_coral_scar_data_colony_level.csv: Processed data from the file above filtered to only include coral taxa commonly predated by parrotfishes (determined as coral taxa for which at least 3 colonies across the entire dataset had 3 recent parrotfish predation scars). This includes the calculated coral colony surface area and the estimated total/sum recent scar area per coral colony. 3) regional_fish_data.csv: Parrotfish abundance and size for individuals greater than or equal to 15 cm fork length. This data includes estimated fish weight and related length-weight conversion values used to calculate these values. 4) site_coordinates.csv: Metadata of the latitude and longitude of all study sites.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Parrotfishes are widely considered to be important grazers on coral reefs that remove autotrophic biomass from the reef substrate and create bare space that is conducive to larval coral settlement and recruitment. Because of the top-down effects associated with their benthic foraging, this has been a major focus of parrotfish research. Another aspect of parrotfish foraging and trophic ecology that has received very little attention is coprophagy, the consumption of fecal matter. The feces of planktivorous fishes, including Chromis spp., have been identified as important sources of nutrients and trace elements to tropical and temperate reef ecosystems. Their feces are readily consumed by a variety of fishes, including parrotfishes. Although parrotfish coprophagy has been observed in prior studies, its frequency has not yet been quantified. In this study, we observed foraging in five parrotfishes on the fringing reefs of Bonaire, Netherlands: Scarus iseri, Scarus taeniopterus, Scarus vetula, Sparisoma aurofrenatum, and Sparisoma viride. For three of these species, we observed individuals of both ontogenetic phases (terminal and initial phase) to investigate ontogenetic differences in foraging. We found that coprophagy was common in four of these species (Sc. iseri, Sc. taeniopterus, Sc. vetula, and Sp. aurofrenatum), occurring in 46-90% of individuals (Sc. vetula and Sc. taeniopterus, respectively). Though we did not identify the origin of every fecal pellet consumed, we directly observed focal fishes targeting fecal pellets produced by planktivorous Chromis spp. that were often seen schooling above the reef during this feeding behavior. Additionally, most of the fecal pellets consumed by the parrotfishes were similar in appearance (i.e., relative size, shape, coloration, and consistency) to the feces produced by Chromis spp., predominantly Chromis multilineata, suggesting this common origin. However, bites on fecal matter were a relatively small proportion of the total bites taken by these species (< 5%). In contrast, a majority of bites taken by these species were taken on substrates classified as eplithic algal matrix (EAM) or crustose coralline algae (68.5-90.6% of total bites across all five species). Despite being an infrequent target of parrotfish foraging, we estimated that daily fecal C consumption is equivalent to approximately 27% of the daily algal C intake by parrotfishes targeting the major benthic foraging targets of parrotfishes (large turfs, small turfs on endolithic algae or crustose coralline algae, and crustose coralline algae) in Bonaire. The feces of plantivorous reef fishes like Chromis spp. are also likely a valuable source of nutrients to reef fishes, because the fecese of Chromis spp. has higher protein and lipid content and lower C:N and C:P than many benthic marine algae and cyanobacteria, including from the tropics. The absence of coprophagy in Sp. viride and reduced rates of coprophagy in Sc. vetula relative to the other coprophagic species could be the result of increased access to protein-rich endolithic components of the benthos. Access to endolithic components of the benthos increases with body size and the ability to excavate benthic substrate while foraging. Sparisoma viride is an important excavating parrotfish on Caribbean coral reefs, and Sc. vetula is generally larger than the other coprophagic species in our study. Future work should attempt to further quantify the contribution of fecal matter to the nutrition of parrotfishes relative to benthic foraging targets in order to provide a more complete understanding of parrotfish nutritional ecology and to elucidate the importance of coprophagy in nutrient recycling and retention on coral reefs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Parrotfish assemblages, reef habitat, and predatory coral reef fish data from surveys conducted on the Northern Great Barrier Reef, Australia in September of 2014. The survey included 82 sites across 31 reef structures spanning six degrees of latitude. This dataset contains the main environmental parameters for the 82 sites in this study along with site names, latitudes, and longitudes. These data were published in Johnson et al. (2019).
To better understand the functional roles of parrotfishes on Caribbean coral reefs we documented abundance, habitat preferences, and diets of nine species of parrotfishes (Scarus coelestinus, Scarus coeruleus, Scarus guacamaia, Scarus taeniopterus, Scarus vetula, Sparisoma aurofrenatum, Sparisoma chrysopterum, Sparisoma rubripinne, Sparisoma viride) on three high-relief spur-and-groove reefs (Molasses, Carysfort, and Elbow) offshore of Key Largo in the Florida Keys National Marine Sanctuary. On each reef, we conducted fish surveys, behavioral observations, and benthic surveys in three habitat types: high-relief spur and groove (depth 2 - 6 m), low-relief carbonate platform/hardbottom (depth 4 - 12 m), and carbonate boulder/rubble fields (depth 4 - 9 m). In addition, fish surveys were also conducted on a fourth high-relief spur-and-groove reef (French). We estimated parrotfish abundance in each of the three habitat types in order to assess the relative abundance and biomass of different species and to quantify differences in habitat selection. To estimate parrotfish density, we conducted 20 to 30 minute timed swims while towing a GPS receiver on a float on the surface to calculate the amount of area sampled. During a swim the observer would swim parallel with the habitat type being sampled and count and estimate the size to the nearest cm of all parrotfishes greater than or equal to 15 cm in length that were encountered in a 5 m wide swath. To quantify parrotfish behavior, approximately six individuals of each species were observed at each site for 20 min each. Foraging behavior was recorded by a SCUBA diver while towing a GPS receiver (Garmin GPS 72) attached to a surface float, which obtained position fixes of the focal fish at 15 s intervals. Fish were followed from a close distance (~ 2 m when possible), and food items were identified to the lowest taxonomic level possible, with macroalgae and coral usually identified to genus or species. Many bites involved scraping or excavating substrate colonized by a multi-species assemblage of filamentous “turf†algae and crustose coralline algae (CCA). Thus, multiple species of filamentous algae, endolithic algae, and CCA could be harvested in a single bite, and it was impossible to determine the specific species of algae targeted. We also recorded the type of substrate targeted during each foraging bout, categorizing each substrate as one of the following: (1) dead coral, (2) coral pavement, (3) boulder, (4) rubble, or (5) ledge. Dead coral included both convex and concave surfaces on the vertical and horizontal planes of three dimensional coral skeletons (primarily dead Acropora palmata) that were attached to reef substrate. Coral pavement was carbonate reef with little topographic complexity (i.e., flat limestone pavement). Boulder was large remnants of dead mounding corals not clearly attached to the bottom and often partially buried in sand. Coral rubble consisted of small dead coral fragments (generally < 10 cm in any dimension) that could be moved with minimal force. Ledges consisted entirely of the undercut sides of large spurs in the high-relief spur and groove habitat. In order to quantify the relative abundance of different food types, we estimated the percent cover of algae, coral, and other sessile invertebrates on each of the five substrates commonly targeted by parrotfishes (dead coral, coral pavement, boulder, rubble, or ledge) in 0.5 m x 0.5 m photoquadrats. We photographed a total of 8 haphazardly selected quadrats dispersed throughout the study site for each substrate type at each of the three sites (N = 24 quadrats per substrate type, N = 120 quadrats total). Each photoquadrat was divided into sixteen 12 cm x 12 cm sections which were individually photographed, and percent cover was estimated from 9 stratified random points per section (N = 144 point per quadrat).
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The unique traits of large animals often allow them to fulfill functional roles in ecosystems that small animals cannot. However, large animals are also at greater risk from human activities. Thus, it is critical to understand how losing large animals impacts ecosystem function. In the oceans, selective fishing for large animals alters the demographics and size-structure of numerous species. While the community-wide impacts of losing large animals is a major theme in terrestrial research, the ecological consequences of removing large animals from marine ecosystems remain understudied. Here, we combine survey data from 282 sites across the Caribbean with a field experiment to investigate how altering the size-structure of parrotfish populations impacts coral reef communities. We show that Caribbean-wide, parrotfish populations are skewed towards smaller individuals, with fishes <11 cm in length comprising nearly 70% of the population in the most heavily fished locations versus ~25% at minimally fished sites. Despite these differences in size-structure, sites had similar overall parrotfish biomass. As a result, algal cover was unrelated to parrotfish biomass and instead, was negatively correlated with the density of large parrotfishes. To mechanistically explore how large parrotfishes shape benthic communities, we manipulated fishes’ access to the benthos to create three distinct fish communities with different size-structure. We found that excluding large or large and medium-sized parrotfishes did not alter overall parrotfish grazing rates but caused respective 4- and 10-fold increases in algal biomass. Unexpectedly, branching corals benefited from excluding large parrotfishes whereas the growth of mounding coral species was impaired. Similarly, removing large parrotfishes led to unexpected increases in coral recruitment that were absent when both large and medium bodied fishes were excluded. Our data highlight the unique roles of large parrotfishes in driving benthic dynamics on coral reefs and suggests that diversity of size is an important component of how herbivore diversity impacts ecosystem function on reefs. This study adds to a growing body of literature revealing the ecological ramifications of removing large animals from ecosystems and sheds new light on how fishing down the size-structure of parrotfish populations alters functional diversity to reshape benthic reef communities.
Methods Data collected from manipulative experiments conducted in the Florida Keys. Includes data on algal diversity in fish exclosure plots, reported as total number of unique macroalgal species in each plot. Coral growth data, measured over the course of 14 months. Benthic cover, calculated as the percent cover of canopy and benthos for specific algal groups, and feeding data, presented as the sum of bites taken by scarids and acnathurids of different size classes in exlcosure treatments throughout the experiment.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Animals often occupy home ranges where they conduct daily activities. In many parrotfishes, large terminal phase (TP) males defend their diurnal (i.e., daytime) home ranges as intraspecific territories occupied by harems of initial phase (IP) females. However, we know relatively little about the exclusivity and spatial stability of these territories. We investigated diurnal home range behavior in several TPs and IPs of five common Caribbean parrotfish species on the fringing coral reefs of Bonaire, Caribbean Netherlands. We computed parrotfish home ranges to investigate differences in space use and then quantified spatial overlap of home ranges between spatially co-occurring TPs to investigate exclusivity. We also quantified spatial overlap of home ranges estimated from repeat tracks of a few TPs to investigate their spatial stability. We then discussed these results in the context of parrotfish social behavior. Home range sizes differed significantly among species. Spatial overlap between home ranges was lower for intraspecific than interspecific pairs of TPs. Focal TPs frequently engaged in agonistic interactions with intraspecific parrotfish and interacted longest with intraspecific TP parrotfish. This behavior suggests that exclusionary agonistic interactions may contribute to the observed patterns of low spatial overlap between home ranges. Spatial overlap of home ranges estimated from repeated tracks of several TPs of three study species was high, suggesting that home ranges were spatially stable for at least one month. Taken together, our results suggest that daytime parrotfish space use is constrained within fixed intraspecific territories in which territory holders have nearly exclusive access to resources. Grazing by parrotfishes maintains benthic reef substrates in early successional states that are conducive to coral larval settlement and recruitment. Behavioral constraints on parrotfish space use may drive spatial heterogeneity in grazing pressure and affect local patterns of benthic community assembly. A thorough understanding of the spatial ecology of parrotfishes is, therefore, necessary to elucidate their functional roles on coral reefs. Methods Study species and sites We conducted our research on Scarus iseri, Scarus taeniopterus, Scarus vetula, Sparisoma aurofrenatum, and Sparisoma viride at five fringing coral reefs along the leeward coast of Bonaire during January (Winter) and May-July (Summer) 2019: Angel City (12.10305º, -68.28852º), Aquarius (12.09824º, -68.28624º), Bachelor’s Beach (12.12605º, -68.28819º), Invisibles (12.07805º, -68.28175º), and The Lake (12.10618º, -68.29079º). The fringing coral reefs of Bonaire, Caribbean Netherlands have remained resilient despite multiple disturbances, and boast higher coral cover than most Caribbean coral reefs (Perry et al. 2013, Steneck et al. 2019). The abundance and biomass of different fish groups, including parrotfishes, is also much higher on Bonaire’s coral reefs compared to more heavily fished reefs in the Eastern Caribbean (Hawkins & Roberts 2003, 2004, Steneck et al. 2019). The benthic composition across our study sites was similar, with relatively high coral cover (~20%) and low macroalgal cover (< 3%; Manning & McCoy 2022). Additionally, our five focal parrotfish species comprised more than 96% of the parrotfish biomass at our study sites (Manning & McCoy 2022). Parrotfish tracking We conducted concurrent GPS tracking and behavioral observations of TP and IP parrotfishes between 1000–1600 hrs, peak foraging times for parrotfishes (Bruggemann et al. 1994b a). We identified focal parrotfish (TP or IP) haphazardly at ~10 m depth on SCUBA at each site. Each fish was then allowed to acclimate to diver presence for approximately 1–2 mins, during which time we visually estimated standard length (to the nearest cm) by measuring the distance between reference objects passed by the fish using a collapsible meter-stick. We then estimated body mass (g) from standard length using published length-weight relationships (Bohnsack & Harper 1988; Appendix: Table A1). We followed focal fish from ~2 m, and recorded their behavior in high resolution (4K) using a GoPro Hero 4 Silver (GoPro, Inc) attached to a ‘selfie-stick’. Focal parrotfishes were tracked at the surface by a snorkeler carrying a handheld GPS receiver (Garmin GPSMap 78sc, United States of America) for 13.56 ± 0.19 mins (mean ± SE, n = 215 total tracks). The GPS receiver was set to record data as often as possible, resulting in a mean (± SE) relocation interval of 12.32 ± 0.21 s (mean ± SE, n = 215 total tracks). We ensured that we did not track the same individuals unintentionally by progressively moving north along the reef, using reference structures, until we identified another unique individual to observe. A few times, we unintentionally conducted repeat tracks of previously tracked individuals (on the same day or within a few days; confirmed as described below). In such cases, unintentional repeat tracks were excluded from our analyses. Because our interest was in the home range behavior of territorial fishes, we excluded non-territorial, transient TP fishes from our analyses. Transient, non-territorial TPs were not site attached and were frequently chased along the reef by territory holders. We preliminarily tracked several territorial TP (hereafter, just TP) Sp. viride at two sites in Winter 2019. Then, during Summer 2019, we tracked several TP Sc. taeniopterus, Sc. vetula, and Sp. viride at all five sites, and TP Sc. iseri and Sp. aurofrenatum at two sites. To investigate differences in space use among ontogenetic phases, we also tracked IP Sc. taeniopterus, Sc. vetula, and Sp. viride at two sites during Summer 2019. Finally, to quantify short-term spatial stability of parrotfish home ranges (described below), we conducted planned repeat tracks of several TP Sc. taeniopterus, Sc. vetula, and Sp. viride at two sites during Summer 2019. Repeat tracks were obtained by tracking TPs along the same portions of the reef where they had been tracked ~1 month prior. Individual parrotfish are identifiable by unique color patterns and markings on their bodies (Dubin 1981, van Rooij et al. 1996). We compared color patterns and markings of each fish using stills taken from our video recorded behavioral observations to confirm that initial and repeat tracks were of the same fish and not different fish occupying the same areas (Figures A1-A3). We also obtained unplanned, repeat tracks of 4 TP Sp. viride at Angel City and Bachelor’s Beach (n = 2 per site) during Summer 2019 that were initially tracked in January 2019. Home ranges of the 4 fish were in the same locations in both tracking periods, and visual observation of color patterns and markings from video stills confirmed that they were the same fish. A full breakdown of our sampling effort is reported in the Appendix (Table A2). Home range estimationVisual analyses of stationarity confirmed that our GPS tracks were sufficiently long to capture home range behavior (Figure A4; Benhamou 2014). We used movement-based kernel density estimation (MKDE) to estimate utilization distributions from our tracks of individual parrotfishes (sensu Benhamou 2011), and define home range and core use areas as the areas underneath the 95% and 50% cumulative isopleths of each utilization distribution, respectively. Though we used MKDE estimates of home ranges for analyses of space use in our study, we also present home range sizes estimated using traditional location-based kernel density estimation (ad hoc bandwidth selection) and minimum convex polygons to facilitate comparisons of home range area with other studies (Table A3). All home ranges and core use areas were computed in the adehabitatHR package in R (Calenge 2006, R Core Team 2020).Home range exclusivity and stabilityTo investigate the exclusivity of parrotfish HRs, we quantified spatial overlap between HRs of spatially co-occurring TP parrotfishes tracked during Summer 2019. This measure of spatial overlap estimates shared space use between neighboring fish that are sharing at least some space on the reef. We used only HRs estimated from the first GPS track of TPs for which we had replicate GPS tracks. Spatial overlap was estimated using Bhattacharyya’s Affinity (BA), a function of the product of two utilization distributions that ranges from 0 (no overlap) to 1 (perfect overlap) and is a strong metric of joint space use between animals, particularly when comparing utilization distributions estimated for the same animal at different times (Fieberg & Kochanny 2005). As such, we also used BA to quantify the spatial overlap of HRs estimated from repeat tracks of TP Sc. taeniopterus, Sc. vetula, and Sp. viride to determine the spatial stability of those HRs. To distinguish spatial overlap between different spatially co-occurring individuals and spatial overlap of home ranges estimated from repeat tracks of the same individuals, we use the terms spatial overlap and temporal overlap, respectively. Spatial and temporal overlaps of MKDE home ranges were computed in the adehabitatHR package in R (Calenge 2006). Occupancy changeDuring our attempt to repeatedly track parrotfishes at Aquarius, we observed an occupancy change in a TP Sc. vetula home range. We analyzed this occupancy change as a separate case study (Figure A5). To investigate how a change in occupancy affected space use, we quantified spatial overlap between the home range of the new occupant and the home range of the old occupant. We also quantified spatial overlap between the home range of the new occupant and the home ranges of spatially co-occurring intraspecific and interspecific fishes from the initial tracking (Table A4).Social behavior We quantified the social behavior of the TP parrotfishes tracked in Summer 2019 (n = 128) by analyzing the video recordings of the initial tracks for each fish (when repeat
This dataset contains parrotfish bite observations for the study plots at Pickles Reef, Florida Keys National Marine Sanctuary from 2009-2013. Published in Nature Communications (2016) doi:10.1038/ncomms11833, Supplementary Data 2c.
Natural history of the study site:
This experiment was conducted in the area of Pickles Reef (24.99430, -80.40650), located east of Key Largo, Florida in the United States. The Florida Keys reef tract consists of a large bank reef system located approximately 8 km offshore of the Florida Keys, USA, and paralleling the island chain. Our study reef is a 5-6 m deep spur and groove reef system within this reef tract. The reefs of the Florida Keys have robust herbivorous fish populations and are relatively oligotrophic. Coral cover on most reefs in the Florida Keys, including our site, is 5-10%, while macroalgal cover averages ~15%, but ranges from 0-70% depending on location and season. Parrotfishes (Scaridae) and surgeonfishes (Acanthuridae) are the dominant herbivores on these reefs as fishing for them was banned in 1981. The other important herbivore on Caribbean reefs, the urchin Diadema antillarum, remains at low densities across the Florida Keys following the mass mortality event in 1982-3.
Related Reference:
Zaneveld, J.R., D.E. Burkepile, A.A. Shantz, C. Pritchard, R. McMinds, J. Payet, R. Welsh, A.M.S. Correa, N.P. Lemoine, S. Rosales, C.E. Fuchs, and R. Vega Thurber (2016) Overfishing, nutrient pollution, and temperature interact to disrupt coral reefs down to microbial scales. Nature Communications 7:11833 doi:10.1038/ncomms11833 Supplementary Information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset used for the Yarlett et al. (2021) article "Quantifying production rates and size fractions of parrotfish-derived sediment: a key functional role on Maldivian coral reefs" published in Ecology and Evolution.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
With over 600 valid species, the wrasses (family Labridae) are among the largest and most successful of the marine teleosts. They feature prominently on coral reefs where they are known not only for their impressive diversity in colouration and form, but also in their functional specialization and ability to occupy a wide variety of trophic guilds. Among the wrasses, the parrotfishes (tribe Scarini) display some one of the most dramatic examples of trophic specialization. Using abrasion-resistant biomineralized teeth, parrotfishes are able to mechanically extract protein-rich micro-photoautotrophs growing in and amongst reef carbonate material, a dietary niche that is inaccessible to most other teleost fishes. This ability to exploit an otherwise untapped trophic resource is thought to have played a role in the diversification and evolutionary success of the parrotfishes. In order to better understand the key evolutionary innovations leading to the success of these dietary specialists, we sequenced and analysed the genome of a representative species, the spotted parrotfish (Cetoscarus ocellatus). We find significant expansion, selection, and duplication within several detoxification gene families and a novel poly-glutamine expansion in the enamel protein ameloblastin, and we consider their evolutionary implications. Our genome provides a useful resource for comparative genomic studies investigating the evolutionary history of this highly specialized teleostean radiation. Methods The spotted parrotfish genomes (Cetoscarus ocellatus) was sequenced and assembled to investigate the evolution of this coral reef fish group, and to provide genomic resources for studies on the Scarini. This genome was assembled using a combination of long-read, linked-read, and Hi-C data (the raw seqeunce data are avalable on the SRA database under BioProject accession PRJNA1081164). Assembly methods are outlined in the associated manuscript. Briefly, an initial de novo assembly of the PacBio long-read data was performed using Canu v.2.1.1 with default settings and an estimated genome size of 1.4 Gb (based on published labrid genomes). TELL-seq linked reads were used to scaffold the draft de novo long-read assembly and improve its contiguity using Long Ranger basic v2.2.2, ARCS v1.2, and LINKS v1.8.7. Finally, Hi-C reads were aligned to the ARCS/LINKS-scaffolded draft assembly. The genome was annotated using FGENESH++.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains the digitized treatments in Plazi based on the original journal article Joao Luiz Gasparini, Jean-Christophe Joyeux, Sergio R. Floeter (2003): Sparisoma tuiupiranga, a new species of parrotfish (Perciformes: Labroidei: Scaridae) from Brazil, with comments on the evolution of the genus. Zootaxa 384: 1-14, URL: http://www.zoobank.org/urn:lsid:zoobank.org:pub:82142975-3858-4904-A267-7B549FEBEAF3
The ecological impacts of coral bleaching on reef communities are well documented, but resultant impacts upon reef-derived sediment supply are poorly quantified. This is an important knowledge gap because these biogenic sediments underpin shoreline and reef island maintenance. Here we explore the impacts of the 2016 bleaching event on sediment generation by two dominant sediment producers (parrotfish and Halimeda spp.) on southern Maldivian reefs. Our data identifies two pulses of increased sediment generation in the three years since bleaching. The first occurred within ~6 months after bleaching as parrotfish biomass and resultant erosion rates increased, likely in response to enhanced food availability. The second pulse occurred 1-3 years post-bleaching, after further increases in parrotfish biomass and a major (~4-fold) increase in Halimeda spp. abundance. Total estimated sediment generation from these two producers increased from ~0.5 kg CaCO3 m-2 yr-1 (pre-bleaching; 2016) to ~3.7 ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset used for the Lange et al (2020) article "Site-level variation in parrotfish grazing and bioerosion as a function of species-specific feeding metrics" published in Diversity.
During ontogeny, animals often undergo significant shape and size changes, coinciding with ecological shifts. This is evident in parrotfishes (Eupercaria: Labridae), which experience notable ecological shifts during development, transitioning from carnivorous diets as larvae and juveniles to herbivorous and omnivorous diets as adults, using robust beaks and skulls for feeding on coral skeletons and other hard substrates. These ontogenetic shifts mirror their evolutionary history, as parrotfishes are known to have evolved from carnivorous wrasse ancestors. Parallel shifts at ontogenetic and phylogenetic levels may have resulted in similar evolutionary and ontogenetic allometric trajectories within parrotfishes. To test this hypothesis, using micro-CT scanning and 3D geometric morphometrics, we analyze the effects of size on the skull shape of the striped parrotfish Scarus iseri and compare its ontogenetic allometry to the evolutionary allometries of 57 parrotfishes and 162 non-parrotfish..., To investigate growth allometry, we examined the ontogenetic series of S. iseri, encompassing 54 individuals with a total length ranging from 1.75 to 33.5 cm. For skull shape comparison analyses among S. iseri, other parrotfishes, and non-parrotfishes wrasses, our sample of adults comprises 336 individuals (160 adult parrotfishes and 176 adult non-parrotfish wrasses) from 217 labrid fishes (Table S1). From this dataset, we compared the evolutionary allometry of Scarines reef clade (57 species) to ontogenetic allometry of S. iseri. The ontogenetic series of S. iseri was obtained through sampling carried out in Belize in 2023 (IACUC protocols: UT Austin/AUP-2021-00064 and SERC/10-15-15-SJB; Collection permits: BF000005-16 and BF0042-22) with additional individuals from the Field Museum of Natural History (FMNH). The remaining species were obtained through several museums (Table S1). We assessed the three-dimensional skull shape of each labrid species through micro-computed tomography (μC..., , # Ecological shifts underlie parallels between ontogenetic and evolutionary allometries in the striped parrotfish
Continued methods
(a)Â Â Ontogenetic allometry of *Scarus iseri*
To analyze the shape variation of entire skull and individual bones of S. iseri across development, we applied Principal Component Analysis (PCA) using gm.prcomp function in geomorph package (Adams et al., 2022).
To estimate coefficients of ontogenetic allometry and test the effects of size on skull and bone shapes (superimposed coords), we used Analysis of Variance, fitting a model with one main effect, the factor “Size†, measured as ln-transformed CS (LCS). The ANOVA was performed using the procD.lm function in geomorph (Collyer and Adams, 2018; 2021). To better visualize these relationships, we predicted individual shapes using group-specific regression models, and the resulting shapes for all samples were plotted using a PCA. We plotted PC1 scores against size. Allometric axes were then plo...
Species-specific projected total habitat suitability index (HSI) and HSI's change or 'anomaly' under different carbon dioxide emission levels, including (A) total HSI for the 1970 to 2000 period; and changes in HSI under scenarios of (B) ~400 ppm and (C) ~565 ppm atmospheric carbon dioxide concentration in the high resolution Earth system model (GFDL CM2.6).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset for Yarlett et al., (2018) "Constraining species-size class variability in rates of parrotfish bioerosion on Maldivian coral reefs: implications for regional-scale bioerosion estimates" published in MEPS
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data were published in van Woesik & Cacciapaglia (2018), van Woesik & Cacciapaglia (2019), and van Woesik & Cacciapaglia (2021).
A question mark symbol (?) in the species column indicates that the fish could be identified as a parrotfish but the species could not be identified due to the camera angle. The species name followed by a question mark indicates the identification is uncertain due to the camera angle.
A question mark symbol (?) in the size column indicates the fish could not be accurately measured due to the camera angle.
A question mark symbol (?) in a comment column indicates the species name or size is questionable; the time on the video is recorded for the fish in question.
If a comment column contains a time notation (e.g. "01:00" or ":23"), it refers to the position in the video in minutes and seconds (mm:ss) or seconds (:ss) that the fish was identified.
For more information about the parrotfish species please refer to the Parrotfish species information dataset https://www.bco-dmo.org/dataset/735679.