100+ datasets found
  1. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  3. Coronavirus (Covid-19) Data of United States (USA)

    • kaggle.com
    Updated Jul 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Hanson (2025). Coronavirus (Covid-19) Data of United States (USA) [Dataset]. https://www.kaggle.com/joelhanson/coronavirus-covid19-data-in-the-united-states/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Kaggle
    Authors
    Joel Hanson
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Coronavirus (COVID-19) Data in the United States

    [ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

    United States Data

    Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.

    Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.

    Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.

    Download all the data or clone this repository by clicking the green "Clone or download" button above.

    State-Level Data

    State-level data can be found in the states.csv file. (Raw CSV file here.)

    date,state,fips,cases,deaths
    2020-01-21,Washington,53,1,0
    ...
    

    County-Level Data

    County-level data can be found in the counties.csv file. (Raw CSV file here.)

    date,county,state,fips,cases,deaths
    2020-01-21,Snohomish,Washington,53061,1,0
    ...
    

    In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.

    Methodology and Definitions

    The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.

    It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.

    When the information is available, we count patients where they are being treated, not necessarily where they live.

    In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.

    For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their...

  4. d

    Data from: Novel Coronavirus 2019

    • datahub.io
    Updated Mar 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Novel Coronavirus 2019 [Dataset]. https://datahub.io/core/covid-19
    Explore at:
    Dataset updated
    Mar 23, 2020
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Coronavirus disease 2019 (COVID-19) time series listing confirmed cases, reported deaths and reported recoveries. Data is disaggregated by country (and sometimes subregion). Coronavirus disease (COV...

  5. i

    Coronavirus (COVID-19) Tweets Dataset

    • ieee-dataport.org
    • search.datacite.org
    • +1more
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rabindra Lamsal (2025). Coronavirus (COVID-19) Tweets Dataset [Dataset]. https://ieee-dataport.org/open-access/coronavirus-covid-19-tweets-dataset
    Explore at:
    Dataset updated
    May 7, 2025
    Authors
    Rabindra Lamsal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    2020

  6. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    • ai-chatbox.pro
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  7. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 31, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  8. [DEPRECATED] Données relatives au coronavirus COVID-19

    • data.europa.eu
    csv, excel xlsx, html +3
    Updated Dec 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Disease Prevention and Control (2020). [DEPRECATED] Données relatives au coronavirus COVID-19 [Dataset]. https://data.europa.eu/data/datasets/covid-19-coronavirus-data?locale=fr
    Explore at:
    json, excel xlsx, rss feed, html, xml, csvAvailable download formats
    Dataset updated
    Dec 14, 2020
    Dataset provided by
    European Centre for Disease Prevention and Control (ECDC)http://ecdc.europa.eu/
    Authors
    European Centre for Disease Prevention and Control
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
  9. COVID-19 Case Surveillance Public Use Data

    • data.cdc.gov
    • opendatalab.com
    • +5more
    application/rdfxml +5
    Updated Jul 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Data, Analytics and Visualization Task Force (2024). COVID-19 Case Surveillance Public Use Data [Dataset]. https://data.cdc.gov/Case-Surveillance/COVID-19-Case-Surveillance-Public-Use-Data/vbim-akqf
    Explore at:
    application/rdfxml, tsv, csv, json, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jul 9, 2024
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Data, Analytics and Visualization Task Force
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.

    Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.

    This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.

    CDC has three COVID-19 case surveillance datasets:

    The following apply to all three datasets:

    Overview

    The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.

    For more information: NNDSS Supports the COVID-19 Response | CDC.

    The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.

    COVID-19 Case Reports

    COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.

    All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.

    Data are Considered Provisional

    • The COVID-19 case surveillance data are dynamic; case reports can be modified at any time by the jurisdictions sharing COVID-19 data with CDC. CDC may update prior cases shared with CDC based on any updated information from jurisdictions. For instance, as new information is gathered about previously reported cases, health departments provide updated data to CDC. As more information and data become available, analyses might find changes in surveillance data and trends during a previously reported time window. Data may also be shared late with CDC due to the volume of COVID-19 cases.
    • Annual finalized data: To create the final NNDSS data used in the annual tables, CDC works carefully with the reporting jurisdictions to reconcile the data received during the year until each state or territorial epidemiologist confirms that the data from their area are correct.
    • Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.

    Data Limitations

    To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.

    Data Quality Assurance Procedures

    CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:

    • Questions that have been left unanswered (blank) on the case report form are reclassified to a Missing value, if applicable to the question. For example, in the question “Was the individual hospitalized?” where the possible answer choices include “Yes,” “No,” or “Unknown,” the blank value is recoded to Missing because the case report form did not include a response to the question.
    • Logic checks are performed for date data. If an illogical date has been provided, CDC reviews the data with the reporting jurisdiction. For example, if a symptom onset date in the future is reported to CDC, this value is set to null until the reporting jurisdiction updates the date appropriately.
    • Additional data quality processing to recode free text data is ongoing. Data on symptoms, race and ethnicity, and healthcare worker status have been prioritized.

    Data Suppression

    To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.

    For questions, please contact Ask SRRG (eocevent394@cdc.gov).

    Additional COVID-19 Data

    COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These

  10. Coronavirus COVID-19 Global Cases

    • redivis.com
    application/jsonl +7
    Updated Jul 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Coronavirus COVID-19 Global Cases [Dataset]. http://doi.org/10.57761/pyf5-4e40
    Explore at:
    sas, csv, application/jsonl, spss, stata, parquet, arrow, avroAvailable download formats
    Dataset updated
    Jul 13, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 22, 2020 - Jul 12, 2020
    Description

    Abstract

    JHU Coronavirus COVID-19 Global Cases, by country

    Documentation

    PHS is updating the Coronavirus Global Cases dataset weekly, Monday, Wednesday and Friday from Cloud Marketplace.

    This data comes from the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post.

    Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    Section 2

    Included Data Sources are:

    %3C!-- --%3E

    Section 3

    **Terms of Use: **

    This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.

    Section 4

    **U.S. county-level characteristics relevant to COVID-19 **

    Chin, Kahn, Krieger, Buckee, Balsari and Kiang (forthcoming) show that counties differ significantly in biological, demographic and socioeconomic factors that are associated with COVID-19 vulnerability. A range of publicly available county-specific data identifying these key factors, guided by international experiences and consideration of epidemiological parameters of importance, have been combined by the authors and are available for use:

    https://github.com/mkiang/county_preparedness/

  11. i

    Corona Virus (COVID-19) Turkish Tweets Dataset

    • ieee-dataport.org
    Updated May 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ibrahim Sabuncu (2020). Corona Virus (COVID-19) Turkish Tweets Dataset [Dataset]. https://ieee-dataport.org/open-access/corona-virus-covid-19-turkish-tweets-dataset-0
    Explore at:
    Dataset updated
    May 19, 2020
    Authors
    Ibrahim Sabuncu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Kovid

  12. U

    Coronavirus Corpus

    • dataverse.ucla.edu
    tar
    Updated Apr 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Davies; Mark Davies (2023). Coronavirus Corpus [Dataset]. http://doi.org/10.25346/S6/6WMNQU
    Explore at:
    tar(678544896), tar(582323200), tar(524180480), tar(307430400), tar(650629120), tar(5953272320), tar(874071552), tar(627075584), tar(905722368), tar(850724864), tar(660690432), tar(743148544), tar(218837504), tar(73014784), tar(3919195648), tar(250127360), tar(372817920), tar(1614805504), tar(605990400), tar(274692096), tar(218329088), tar(50947072), tar(223554560), tar(529958912), tar(329620992), tar(531820032), tar(399536640), tar(769394688), tar(329752064)Available download formats
    Dataset updated
    Apr 27, 2023
    Dataset provided by
    UCLA Dataverse
    Authors
    Mark Davies; Mark Davies
    License

    https://dataverse.ucla.edu/api/datasets/:persistentId/versions/5.5/customlicense?persistentId=doi:10.25346/S6/6WMNQUhttps://dataverse.ucla.edu/api/datasets/:persistentId/versions/5.5/customlicense?persistentId=doi:10.25346/S6/6WMNQU

    Description

    The Coronavirus Corpus contains about 1.5 billion words of data in approximately 1.9 million texts from Jan 2020 - Dec 2022, and it is designed to be the definitive record of the social, cultural, and economic impact of the coronavirus (COVID-19) during this time. The corpus allows you to see the frequency of words and phrases month by month and even day by day since January 2020, such as social distancing, flatten the curve, WORK * home, Zoom, Wuhan, hoard*, toilet paper, curbside, pandemic, reopen, defy, anti-mask*. Access to material is limited to UCLA graduate students and faculty. Undergraduates please use the standard web interface for the corpora: https://www.english-corpora.org/corona/

  13. d

    Washington State Novel Coronavirus (COVID-19) Cases

    • catalog.data.gov
    • data.wa.gov
    • +2more
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.wa.gov (2025). Washington State Novel Coronavirus (COVID-19) Cases [Dataset]. https://catalog.data.gov/dataset/washington-state-novel-coronavirus-covid-19-cases
    Explore at:
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    data.wa.gov
    Area covered
    Washington
    Description

    On January 21, 2020, the U.S. Centers for Disease Control and Prevention (CDC) and Washington State Department of Health (DOH) announced the first case of 2019 Novel Coronavirus (COVID-19) in the United States, in Washington state. The link below provides access to DOH daily updates of confirmed Washington State COVID-19 cases and deaths, along with essential information about the virus and guidance on prevention and risk management. The link includes Frequently Asked Questions, as well as resources for specific groups such as parents, caregivers, employers, schools and health care providers.

  14. f

    COVID-19 Twitter Dataset

    • figshare.com
    • borealisdata.ca
    zip
    Updated Oct 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Media Lab (2021). COVID-19 Twitter Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.16713448.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 2, 2021
    Dataset provided by
    figshare
    Authors
    Social Media Lab
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The current dataset contains Tweet IDs for tweets mentioning "COVID" (e.g., COVID-19, COVID19) and shared between March and July of 2020.Sampling Method: hourly requests sent to Twitter Search API using Social Feed Manager, an open source software that harvests social media data and related content from Twitter and other platforms.NOTE: 1) In accordance with Twitter API Terms, only Tweet IDs are provided as part of this dataset. 2) To recollect tweets based on the list of Tweet IDs contained in these datasets, you will need to use tweet 'rehydration' programs like Hydrator (https://github.com/DocNow/hydrator) or Python library Twarc (https://github.com/DocNow/twarc). 3) This dataset, like most datasets collected via the Twitter Search API, is a sample of the available tweets on this topic and is not meant to be comprehensive. Some COVID-related tweets might not be included in the dataset either because the tweets were collected using a standardized but intermittent (hourly) sampling protocol or because tweets used hashtags/keywords other than COVID (e.g., Coronavirus or #nCoV). 4) To broaden this sample, consider comparing/merging this dataset with other COVID-19 related public datasets such as: https://github.com/thepanacealab/covid19_twitter https://ieee-dataport.org/open-access/corona-virus-covid-19-tweets-dataset https://github.com/echen102/COVID-19-TweetIDs

  15. o

    COVID-19 Genome Sequence Dataset

    • registry.opendata.aws
    • catalog.midasnetwork.us
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Library of Medicine (NLM) (2020). COVID-19 Genome Sequence Dataset [Dataset]. https://registry.opendata.aws/ncbi-covid-19/
    Explore at:
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    <a href="http://nlm.nih.gov/">National Library of Medicine (NLM)</a>
    Description

    This repository within the ACTIV TRACE initiative houses a comprehensive collection of datasets related to SARS-CoV-2. The processing of SARS-CoV-2 Sequence Read Archive (SRA) files has been optimized to identify genetic variations in viral samples. This information is then presented in the Variant Call Format (VCF). Each VCF file corresponds to the SRA parent-run's accession ID. Additionally, the data is available in the parquet format, making it easier to search and filter using the Amazon Athena Service. The SARS-CoV-2 Variant Calling Pipeline is designed to handle new data every six hours, with updates to the AWS ODP bucket occurring daily.

  16. COVID-19 Pandemic Data

    • kaggle.com
    Updated Jun 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sunilupadhyay (2020). COVID-19 Pandemic Data [Dataset]. https://www.kaggle.com/sunilhit120/covid19/kernels
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 28, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sunilupadhyay
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    ****Context****

    COVID 19 is a disease caused by the "Novel Corona Virus". People infected with this virus will face respiratory illness, fever, dry cough and tiredness. In some cases common symptoms are aches and conjunctivitis, headache, loss of taste and smell, a rash on skin or discoloration of fingers or toes. The number of cases are increasingly day by day around the world.

    Data Source- https://ourworldindata.org/

    The objective of this project is to detect, prevent and respond to COVID 19 Pandemic. This project includes 207 countries data.

    [COVID- 19 Pandemic Data]

    Content

    1. COVID 19 cases all over the world present in owid-covid-data.xlsx.

    Acknowledgements

    Thanks to ourworldindata.org for making the data available to general public.

    Inspiration

    Looking for ideas and suggestions to inform and empower communities around the world to stay safe and healthy during this Covid-19 crisis.

  17. COVID-19 cases worldwide as of May 2, 2023, by country or territory

    • statista.com
    • ai-chatbox.pro
    Updated Aug 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 cases worldwide as of May 2, 2023, by country or territory [Dataset]. https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/
    Explore at:
    Dataset updated
    Aug 29, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.

    COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.

    Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.

  18. z

    Data from: Suitability Map of COVID-19 Virus Spread

    • zenodo.org
    • data.niaid.nih.gov
    bin, png
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gianpaolo Coro; Gianpaolo Coro (2024). Suitability Map of COVID-19 Virus Spread [Dataset]. http://doi.org/10.5281/zenodo.3725831
    Explore at:
    bin, pngAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodo
    Authors
    Gianpaolo Coro; Gianpaolo Coro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This image reports a Maximum Entropy model that estimates suitable locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.

    The model was trained just on locations in Italy that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:

    • Average Annual Surface Air Temperature in 2018 (NASA)
    • Average Annual Precipitation in 2018 (NASA)
    • CO2 emission (natural+artificial) averaged between January 1979 and December 2013 (Copernicus Atmosphere Monitoring Service)
    • Elevation (NOAA ETOPO2)
    • Population per 0.5° cell (NASA Gridded Population of the World)

    A higher resolution map, the model file (in ASC format) and all parameters used are also attached.

    The model indicates highest correlation with infection rate for CO2 around 0.03 gCm^−2day^−1, for Temperature around 11.8 °C, and for Precipitation around 0.3 kg m^-2 s^-1, whereas Elevation and Population density are poorly correlated with infection rate.

    One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location, and Iran (around Teheran) as a suited location for virus' spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.

    Evaluation:

    A risk score was calculated for each country/region reported by the JHU monitoring system (https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6). This score is calculated as the summed normalised probability in the populated locations divided by their total surface. This score represents how much the zone would potentially foster the virus' spread.

    We assessed the reliability of this score, by selecting the country/regions that reported the highest rates of infection. These zones were selected as those with a rate higher than the upper confidence of a log-normal distribution of the rates.

    The agreement between the two maps (covid_high_rate_vs_high_risk.png, where violet dots indicate high infection rates and countries' colours indicate estimated high risk score) is the following:

    Accuracy (overall percentage of correctly predicted high-rate zones): 77.25%
    Kappa (agreement between the two maps): 0.46 (Good, according to Fleiss' intepretation of the score)

    This assessment demonstrates that our map can be used to estimate the risk of a certain country to have a high rate of infection, and indicates that the influence of environmental parameters on virus's spread should be further investigated.

  19. COVID-19 in USA

    • kaggle.com
    zip
    Updated Dec 7, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SRK (2020). COVID-19 in USA [Dataset]. https://www.kaggle.com/sudalairajkumar/covid19-in-usa
    Explore at:
    zip(10190889 bytes)Available download formats
    Dataset updated
    Dec 7, 2020
    Authors
    SRK
    Area covered
    United States
    Description

    Context

    Data is obtained from COVID-19 Tracking project and NYTimes. Sincere thanks to them for making it available to the public.

    Coronaviruses are a large family of viruses which may cause illness in animals or humans. In humans, several coronaviruses are known to cause respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). The most recently discovered coronavirus causes coronavirus disease COVID-19 - World Health Organization

    The number of new cases are increasing day by day around the world. This dataset has information from 50 US states and the District of Columbia at daily level.

    LICENSE:

    Please refer here Apache License 2.0 A permissive license whose main conditions require preservation of copyright and license notices. Contributors provide an express grant of patent rights. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

    For counties dataset, please refer here

    Content

    us_states_covid19_daily.csv

    This dataset has number of tests conducted in each state at daily level. Column descriptions are

    date - date of observation state - US state 2 digit code positive - number of tests with positive results negative - number of tests with negative results pending - number of test with pending results death - number of deaths total - total number of tests

    Acknowledgements

    Sincere thanks to COVID-19 Tracking project from which the data is obtained.

    Sincere thanks to NYTimes for the counties dataset

    There is a nice tableau public dashboard on the data. Images for this dataset is obtained from the same. Thank you.

    Inspiration

    Some of the questions that could be answered are 1. How is the spread over time to various states 2. Change in number of people tested over time

  20. d

    Coronavirus daily data

    • data.world
    csv, zip
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Di Marco (2025). Coronavirus daily data [Dataset]. https://data.world/markmarkoh/coronavirus-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Mar 10, 2025
    Authors
    Mark Di Marco
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Description

    Originally sourced from https://ourworldindata.org/coronavirus-source-data

    Synced daily

    Update 12/04/2020

    The data sources have been updated to use JHU data:

    From OWID:

    ​> On 30 November 2020, we changed our source for confirmed cases and deaths to the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Our previous source for confirmed cases and deaths, the European Centre for Disease Prevention and Control (ECDC), had announced in November 2020 that it would switch from a daily to a weekly reporting schedule from December. Our World in Data therefore had to transition away from the ECDC as a source to continue to provide daily updates of confirmed cases and deaths. The data last sourced from the ECDC remains available as an archive in the ecdc folder. The format (variable names and types) of our complete COVID-19 dataset remains the same.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

Coronavirus (Covid-19) Data in the United States

Explore at:
Dataset provided by
New York Times
Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu