The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
After three years of around-the-clock tracking of COVID-19 data from around the world, Johns Hopkins has discontinued the Coronavirus Resource Center’s operations.
The site’s two raw data repositories will remain accessible for information collected from 1/22/20 to 3/10/23 on cases, deaths, vaccines, testing and demographics.
Novel Corona Virus (COVID-19) epidemiological data since 22 January 2020. The data is compiled by the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) from various sources including the World Health Organization (WHO), DXY.cn, BNO News, National Health Commission of the People’s Republic of China (NHC), China CDC (CCDC), Hong Kong Department of Health, Macau Government, Taiwan CDC, US CDC, Government of Canada, Australia Government Department of Health, European Centre for Disease Prevention and Control (ECDC), Ministry of Health Singapore (MOH), and others. JHU CCSE maintains the data on the 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository on Github.
Fields available in the data include Province/State, Country/Region, Last Update, Confirmed, Suspected, Recovered, Deaths.
On 23/03/2020, a new data structure was released. The current resources for the latest time series data are:
---DEPRECATION WARNING---
The resources below ceased being updated on 22/03/2020 and were removed on 26/03/2020:
As of April 26, 2023, the number of both confirmed and presumptive positive cases of the COVID-19 disease reported in the United States had reached over 104 million with over 1.1 million deaths reported among these cases.
Coronavirus deaths by age in the U.S. Daily new cases of COVID-19 hit record highs in the United States at the beginning of 2022. Underlying health conditions can worsen cases of coronavirus, and case fatality rates among confirmed COVID-19 patients increase with age. The highest number of deaths from COVID-19 have been among those aged 85 years and older, with this age group accounting for over 300 thousand deaths.
Where has this coronavirus come from? Coronaviruses are a large group of viruses transmitted between animals and people that cause illnesses ranging from the common cold to more severe diseases. The novel coronavirus that is currently infecting humans was already circulating among certain animal species. The first human case of this new coronavirus strain was reported in China at the end of December 2019. The coronavirus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its associated disease is known as COVID-19.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Coronavirus disease 2019 (COVID-19) time series listing confirmed cases, reported deaths and reported recoveries. Data is disaggregated by country (and sometimes subregion). Coronavirus disease (COV...
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset (COV19Tweets) includes CSV files that contain IDs and sentiment scores of the tweets related to the COVID-19 pandemic. The real-time Twitter feed is monitored for coronavirus-related tweets using 90+ different keywords and hashtags that are commonly used while referencing the pandemic. The oldest tweets in this dataset date back to October 01, 2019. This dataset has been wholly re-designed on March 20, 2020, to comply with the content redistribution policy set by Twitter. Twitter's policy restricts the sharing of Twitter data other than IDs; therefore, only the tweet IDs are released through this dataset. You need to hydrate the tweet IDs in order to get complete data. For detailed instructions on the hydration of tweet IDs, please read this article.Announcements: We release CrisisTransformers (https://huggingface.co/crisistransformers), a family of pre-trained language models and sentence encoders introduced in the paper "CrisisTransformers: Pre-trained language models and sentence encoders for crisis-related social media texts". The models were trained based on the RoBERTa pre-training procedure on a massive corpus of over 15 billion word tokens sourced from tweets associated with 30+ crisis events such as disease outbreaks, natural disasters, conflicts, etc. CrisisTransformers were evaluated on 18 public crisis-specific datasets against strong baselines such as BERT, RoBERTa, BERTweet, etc. Our pre-trained models outperform the baselines across all 18 datasets in classification tasks, and our best-performing sentence-encoder outperforms the state-of-the-art by more than 17% in sentence encoding tasks. Please refer to the associated paper for more details.MegaGeoCOV Extended — an extended version of MegaGeoCOV has been released. The dataset is introduced in the paper "A Twitter narrative of the COVID-19 pandemic in Australia".We have released BillionCOV — a billion-scale COVID-19 tweets dataset for efficient hydration. Hydration takes time due to limits placed by Twitter on its tweet lookup endpoint. We re-hydrated the tweets present in this dataset (COV19Tweets) and found that more than 500 million tweet identifiers point to either deleted or protected tweets. If we avoid hydrating those tweet identifiers alone, it saves almost two months in a single hydration task. BillionCOV will receive quarterly updates, while this dataset (COV19Tweets) will continue to receive updates every day. Learn more about BillionCOV on its page: https://dx.doi.org/10.21227/871g-yp65. Related publications:Rabindra Lamsal. (2021). Design and analysis of a large-scale COVID-19 tweets dataset. Applied Intelligence, 51(5), 2790-2804.Rabindra Lamsal, Aaron Harwood, Maria Rodriguez Read. (2022). Socially Enhanced Situation Awareness from Microblogs using Artificial Intelligence: A Survey. ACM Computing Surveys, 55(4), 1-38. (arXiv)Rabindra Lamsal, Aaron Harwood, Maria Rodriguez Read. (2022). Twitter conversations predict the daily confirmed COVID-19 cases. Applied Soft Computing, 129, 109603. (arXiv)Rabindra Lamsal, Aaron Harwood, Maria Rodriguez Read. (2022). Addressing the location A/B problem on Twitter: the next generation location inference research. In 2022 ACM SIGSPATIAL LocalRec (pp. 1-4).Rabindra Lamsal, Aaron Harwood, Maria Rodriguez Read. (2022). Where did you tweet from? Inferring the origin locations of tweets based on contextual information. In 2022 IEEE International Conference on Big Data (pp. 3935-3944). (arXiv)Rabindra Lamsal, Maria Rodriguez Read, Shanika Karunasekera. (2023). BillionCOV: An Enriched Billion-scale Collection of COVID-19 tweets for Efficient Hydration. Data in Brief, 48, 109229. (arXiv)Rabindra Lamsal, Maria Rodriguez Read, Shanika Karunasekera. (2023). A Twitter narrative of the COVID-19 pandemic in Australia. In 20th International ISCRAM Conference (pp. 353-370). (arXiv)Rabindra Lamsal, Maria Rodriguez Read, Shanika Karunasekera. (2024). CrisisTransformers: Pre-trained language models and sentence encoders for crisis-related social media texts. Knowledge-Based Systems, 296, 111916. (arXiv)Rabindra Lamsal, Maria Rodriguez Read, Shanika Karunasekera. (2024). Semantically Enriched Cross-Lingual Sentence Embeddings for Crisis-related Social Media Texts. In 21st International ISCRAM Conference (in press). (arXiv)An Open access Billion-scale COVID-19 Tweets Dataset (COV19Tweets)— Dataset name: COV19Tweets Dataset— Number of tweets : 2,263,729,117 tweets— Coverage : Global— Language : English (EN)— Dataset usage terms : By using this dataset, you agree to (i) use the content of this dataset and the data generated from the content of this dataset for non-commercial research only, (ii) remain in compliance with Twitter's Policy and (iii) cite the following paper:Lamsal, R. (2021). Design and analysis of a large-scale COVID-19 tweets dataset. Applied Intelligence, 51, 2790-2804. https://doi.org/10.1007/s10489-020-02029-zBibTeX entry:@article{lamsal2021design, title={Design and analysis of a large-scale COVID-19 tweets dataset}, author={Lamsal, Rabindra}, journal={Applied Intelligence}, volume={51}, number={5}, pages={2790--2804}, year={2021}, publisher={Springer} }— Geo-tagged Version: Coronavirus (COVID-19) Geo-tagged Tweets Dataset (GeoCOV19Tweets Dataset)— Dataset updates : Everyday— Active keywords and hashtags (archive: keywords.tsv) : corona, #corona, coronavirus, #coronavirus, covid, #covid, covid19, #covid19, covid-19, #covid-19, sarscov2, #sarscov2, sars cov2, sars cov 2, covid_19, #covid_19, #ncov, ncov, #ncov2019, ncov2019, 2019-ncov, #2019-ncov, pandemic, #pandemic #2019ncov, 2019ncov, quarantine, #quarantine, flatten the curve, flattening the curve, #flatteningthecurve, #flattenthecurve, hand sanitizer, #handsanitizer, #lockdown, lockdown, social distancing, #socialdistancing, work from home, #workfromhome, working from home, #workingfromhome, ppe, n95, #ppe, #n95, #covidiots, covidiots, herd immunity, #herdimmunity, pneumonia, #pneumonia, chinese virus, #chinesevirus, wuhan virus, #wuhanvirus, kung flu, #kungflu, wearamask, #wearamask, wear a mask, vaccine, vaccines, #vaccine, #vaccines, corona vaccine, corona vaccines, #coronavaccine, #coronavaccines, face shield, #faceshield, face shields, #faceshields, health worker, #healthworker, health workers, #healthworkers, #stayhomestaysafe, #coronaupdate, #frontlineheroes, #coronawarriors, #homeschool, #homeschooling, #hometasking, #masks4all, #wfh, wash ur hands, wash your hands, #washurhands, #washyourhands, #stayathome, #stayhome, #selfisolating, self isolating Important Notes:> Dataset files are published in chronological order.> Twitter's content redistribution policy restricts the sharing of tweet information other than tweet IDs and/or user IDs. Twitter wants researchers to always pull fresh data. It is because a user might delete a tweet or make his/her profile protected.> Retweets are excluded in the files corona_tweets_chi.csv and earlier.> Only the tweet IDs are available (sentiment scores are not available) for the tweets present in the files: corona_tweets_11b.csv, corona_tweets_223.csv, corona_tweets_297.csv, corona_tweets_395.csv and the files containing tweets from before March 20, 2020.> March 29, 2020 04:02 PM - March 30, 2020 02:00 PM -- Some technical fault has occurred. Preventive measures have been taken. Tweets for this session won't be available. [update: the tweets for this session are now available in the corona_tweets_11b.csv file; retweets are excluded though]> Please go through the Dataset Files section for specific notes.> There's a Combined_Files section (at the bottom of the dataset files list) if you want to download dataset files in bulk.> The naming convention for the later added CSVs (tweets from before March 20, 2020) will have a greek alphabet name instead of a numeric counter. I'll start with the last greek alphabet name "omega" and proceed up towards "alpha".> If you want access to tweets older than October 01, 2019, feel free to reach out to me at rlamsal [at] student.unimelb.edu.au using your academic/research institution email.Dataset Files (GMT+5:45)--------- tweets from before March 20, 2020 ---------corona_tweets_theta.csv: 418,625 tweets (October 01, 2019 12:00 AM - October 18, 2019, 07:51 AM)corona_tweets_iota.csv: 1,000,000 tweets (October 18, 2019, 07:51 AM - December 01, 2019 01:25 AM)corona_tweets_kappa.csv: 1,000,000 tweets (December 01, 2019 01:25 AM - January 09, 2020, 10:20 PM)corona_tweets_lambda.csv: 1,000,000 tweets (January 09, 2020, 10:20 PM - January 26, 2020, 05:14 PM)corona_tweets_mu.csv: 1,000,000 tweets (January 26, 2020, 05:14 PM - January 31, 2020, 07:18 AM)corona_tweets_nu.csv: 1,000,000 tweets (January 31, 2020, 07:18 AM - February 05, 2020 03:38 PM)corona_tweets_xi.csv: 4,003,032 tweets (February 05, 2020 03:38 PM - February 28, 2020 04:27 AM)corona_tweets_omicron.csv: 3,000,000 tweets (February 28, 2020 04:27 AM - March 04, 2020 03:36 PM)corona_tweets_pi.csv: 3,000,000 tweets (March 04, 2020 03:36 PM - March 09, 2020 07:58 AM)corona_tweets_rho.csv: 3,990,232 tweets (March 09, 2020 07:58 AM - March 12, 2020 12:01 PM)corona_tweets_sigma.csv: 3,000,000 tweets (March 12, 2020 12:01 PM - March 13, 2020 07:13 PM)corona_tweets_tau.csv: 3,000,000 tweets (March 13, 2020 07:13 PM - March 15, 2020 04:03 AM)corona_tweets_upsilon.csv: 3,999,408 tweets (March 15, 2020 04:03 AM - March 17, 2020 03:25 AM)corona_tweets_phi.csv: 3,000,000 tweets (March 17, 2020 03:25 AM - March 18, 2020 06:51 AM)corona_tweets_chi.csv: 3,000,000 tweets (March 18, 2020 06:51 AM - March 19, 2020 10:57 AM)corona_tweets_psi.csv: 3,878,586 tweets (March 19, 2020 10:57 AM - March 19, 2020 08:04 PM)corona_tweets_omega.csv: 4,000,000 tweets (March 19, 2020 08:04 PM - March 20, 2020 01:37 AM)----------------------------------corona_tweets_01.csv + corona_tweets_02.csv + corona_tweets_03.csv: 2,475,980 tweets (March 20, 2020 01:37 AM - March 21, 2020 09:25 AM)corona_tweets_04.csv: 1,233,340
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and latest trend plot. It covers China, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals)and the US at county-level. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. . The China data is automatically updating at least once per hour, and non-China data is updating hourly. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact us.
Day level information on covid-19 affected cases. Last updated: 31 May 2021
This example dataset is cloned from the Kaggle dataset https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
Context
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Edited: Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
Content
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Column Description
Main file in this dataset is covid_19_data.csv
and the detailed descriptions are below.
covid_19_data.csv
%3C!-- --%3E
2019_ncov_data.csv
This is older file and is not being updated now. Please use the covid_19_data.csv
file
Added two new files with individual level information
COVID_open_line_list_data.csv
This file is obtained from this link
COVID19_line_list_data.csv
This files is obtained from this link
Country level datasets If you are interested in knowing country level data, please refer to the following Kaggle datasets: India - https://www.kaggle.com/sudalairajkumar/covid19-in-indiaSouth Korea - https://www.kaggle.com/kimjihoo/coronavirusdatasetItaly - https://www.kaggle.com/sudalairajkumar/covid19-in-italyBrazil - https://www.kaggle.com/unanimad/corona-virus-brazilUSA - https://www.kaggle.com/sudalairajkumar/covid19-in-usaSwitzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerlandIndonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Acknowledgements
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. This time series data is being compiled from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak. This deposit contains live data from three geographic levels: U.S., states and counties. ICPSR staff scraped these data on 11/22/2020. For the most current data, please visit https://github.com/nytimes/covid-19-data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States recorded 16306656 Coronavirus Recovered since the epidemic began, according to the World Health Organization (WHO). In addition, United States reported 797346 Coronavirus Deaths. This dataset includes a chart with historical data for the United States Coronavirus Recovered.
JHU Coronavirus COVID-19 Global Cases, by country
PHS is updating the Coronavirus Global Cases dataset weekly, Monday, Wednesday and Friday from Cloud Marketplace.
This data comes from the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post.
Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Included Data Sources are:
%3C!-- --%3E
**Terms of Use: **
This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
**U.S. county-level characteristics relevant to COVID-19 **
Chin, Kahn, Krieger, Buckee, Balsari and Kiang (forthcoming) show that counties differ significantly in biological, demographic and socioeconomic factors that are associated with COVID-19 vulnerability. A range of publicly available county-specific data identifying these key factors, guided by international experiences and consideration of epidemiological parameters of importance, have been combined by the authors and are available for use:
Originally sourced from https://ourworldindata.org/coronavirus-source-data
Synced daily
The data sources have been updated to use JHU data:
From OWID:
> On 30 November 2020, we changed our source for confirmed cases and deaths to the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Our previous source for confirmed cases and deaths, the European Centre for Disease Prevention and Control (ECDC), had announced in November 2020 that it would switch from a daily to a weekly reporting schedule from December. Our World in Data therefore had to transition away from the ECDC as a source to continue to provide daily updates of confirmed cases and deaths. The data last sourced from the ECDC remains available as an archive in the ecdc folder. The format (variable names and types) of our complete COVID-19 dataset remains the same.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus was first detected in Wuhan City, Hubei Province, China since then it has spread across countries. On February 11, 2020, the World Health Organization named the disease coronavirus disease 2019 (abbreviated “COVID-19”). Chinese health officials have reported tens of thousands of cases of COVID-19 in China, with the virus reportedly spreading from person-to-person in parts of that country. COVID-19 illnesses, most of them associated with travel from Wuhan, also are being reported in a growing number of international locations, including the United States. Some person-to-person spread of this virus outside China has been detected.
On January 30, 2020, the International Health Regulations Emergency Committee of the World Health Organization declared the outbreak a “public health emergency of international concern external icon” (PHEIC). Coronaviruses are a large family of viruses that are common in many different species of animals, including camels, cattle, cats, and bats. Rarely, animal coronaviruses can infect people and then spread between people such as with MERS-CoV, SARS-CoV, and now with this new virus (named SARS-CoV-2).
This dataset contains the cleaned version of the cumulative daily impact of the virus across different provinces and countries. The main dataset "novel_corona_cleaned_Feb_19.csv" contains the following columns: - Province/State - Country/Region - Lat - Latitude - Long - Longitude - Last Update - Data point last updated on - Confirmed - No. of confirmed cases - Deaths - No. of deaths - Recovered - No. of recoveries
I would like to thank the authors of the following sources who made this dataset possible.
Data Source: https://github.com/CSSEGISandData/COVID-19 (John Hopkins University) Information Source: https://www.cdc.gov/coronavirus/2019-ncov/summary.html
And other unknown sources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Replaced by http://data.europa.eu/88u/dataset/covid-19-coronavirus-data-daily-up-to-14-december-2020
The 2019–20 coronavirus pandemic is an ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The virus first emerged in Wuhan, Hubei, China, in December 2019. On 11 March 2020, the World Health Organization declared the outbreak a pandemic. As of 11 March 2020, over 126,000 cases have been confirmed in more than 110 countries and territories, with major outbreaks in mainland China, Italy, South Korea, and Iran. More than 4,600 have died from the disease and 67,000 have recovered.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this data was scrapped from https://www.worldometers.info/coronavirus/.This data is solely for education purposes only.
This data is solely belongs to https://www.worldometers.info/coronavirus/. for licensing visit https://www.worldometers.info/licensing/
As of June 13, 2023, there have been almost 768 million cases of coronavirus (COVID-19) worldwide. The disease has impacted almost every country and territory in the world, with the United States confirming around 16 percent of all global cases.
COVID-19: An unprecedented crisis Health systems around the world were initially overwhelmed by the number of coronavirus cases, and even the richest and most prepared countries struggled. In the most vulnerable countries, millions of people lacked access to critical life-saving supplies, such as test kits, face masks, and respirators. However, several vaccines have been approved for use, and more than 13 billion vaccine doses had already been administered worldwide as of March 2023.
The coronavirus in the United Kingdom Over 202 thousand people have died from COVID-19 in the UK, which is the highest number in Europe. The tireless work of the National Health Service (NHS) has been applauded, but the country’s response to the crisis has drawn criticism. The UK was slow to start widespread testing, and the launch of a COVID-19 contact tracing app was delayed by months. However, the UK’s rapid vaccine rollout has been a success story, and around 53.7 million people had received at least one vaccine dose as of July 13, 2022.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 766440796 Coronavirus Cases since the epidemic began. In addition, countries reported 6932591 Coronavirus Deaths. This dataset provides - World Coronavirus Cases- actual values, historical data, forecast, chart, statistics, economic calendar and news.
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.