Facebook
Twitter2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.
The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.
The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
Se derivó automáticamente la información de la licencia
2020
Facebook
Twitterhttps://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
Se derivó automáticamente la información de la licencia
Our complete COVID-19 dataset is a collection of the COVID-19 data maintained by Our World in Data. It is updated daily and includes data on confirmed cases, deaths, and testing, as well as other variables of potential interest.
We will continue to publish up-to-date data on confirmed cases, deaths, and testing, throughout the duration of the COVID-19 pandemic.
Our complete COVID-19 dataset is available in CSV, XLSX, and JSON formats, and includes all of our historical data on the pandemic up to the date of publication.
The CSV and XLSX files follow a format of 1 row per location and date. The JSON version is split by country ISO code, with static variables and an array of daily records.
The variables represent all of our main data related to confirmed cases, deaths, and testing, as well as other variables of potential interest.
As of 10 September 2020, the columns are: iso_code, continent, location, date, total_cases, new_cases, new_cases_smoothed, total_deaths, new_deaths, new_deaths_smoothed, total_cases_per_million, new_cases_per_million, new_cases_smoothed_per_million, total_deaths_per_million, new_deaths_per_million, new_deaths_smoothed_per_million, total_tests, new_tests, new_tests_smoothed, total_tests_per_thousand, new_tests_per_thousand, new_tests_smoothed_per_thousand, tests_per_case, positive_rate, tests_units, stringency_index, population, population_density, median_age, aged_65_older, aged_70_older, gdp_per_capita, extreme_poverty, cardiovasc_death_rate, diabetes_prevalence, female_smokers, male_smokers, handwashing_facilities, hospital_beds_per_thousand, life_expectancy, human_development_index
A full codebook is made available, with a description and source for each variable in the dataset.
If you are interested in the individual files that make up the complete dataset, or more detailed information, other files can be found in the subfolders:
ecdc: data fro...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
Se derivó automáticamente la información de la licencia
Findings from the Coronavirus (COVID-19) Infection Survey for England.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
"Our World in Data" which in collaboration with The University of Oxford have developed a reliable repository of datasets about dozens of topics focusing on those big problems which affect the world. This is why since the beginning of COVID-19 outbreak several researchers have been collecting data from every country in the world about multiple indicators which can make us take better decisions, what is more amazing is the fact that this dataset offered is updated every day for all countries allowing people to keep track of it. In the following link you can find fascinating charts about the pandemic and obviously the World COVID-19 dataset (up to date) containing over 60 features which you can download for free:
https://ourworldindata.org/covid-vaccinations
I will be updating this dataset every week according to the published data by the organization, if you found this dataset or the link given useful I would really appreciate your upvote!
Mathieu, E., Ritchie, H., Ortiz-Ospina, E. et al. A global database of COVID-19 vaccinations. Nat Hum Behav (2021)
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
Se derivó automáticamente la información de la licencia
Technical and methodological data from the Coronavirus (COVID-19) Infection Survey, England, Wales, Northern Ireland and Scotland.
Facebook
TwitterAs of November 11, 2022, almost 96.8 million confirmed cases of COVID-19 had been reported by the World Health Organization (WHO) for the United States. The pandemic has impacted all 50 states, with vast numbers of cases recorded in California, Texas, and Florida.
The coronavirus in the U.S. The coronavirus hit the United States in mid-March 2020, and cases started to soar at an alarming rate. The country has performed a high number of COVID-19 tests, which is a necessary step to manage the outbreak, but new coronavirus cases in the U.S. have spiked several times since the pandemic began, most notably at the end of 2022. However, restrictions in many states have been eased as new cases have declined.
The origin of the coronavirus In December 2019, officials in Wuhan, China, were the first to report cases of pneumonia with an unknown cause. A new human coronavirus – SARS-CoV-2 – has since been discovered, and COVID-19 is the infectious disease it causes. All available evidence to date suggests that COVID-19 is a zoonotic disease, which means it can spread from animals to humans. The WHO says transmission is likely to have happened through an animal that is handled by humans. Researchers do not support the theory that the virus was developed in a laboratory.
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and latest trend plot. It covers China, Canada, Australia (at province/state level), and the rest of the world (at country level, represented by either the country centroids or their capitals)and the US at county-level. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. . The China data is automatically updating at least once per hour, and non-China data is updating hourly. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact us.
Facebook
TwitterThis story map explores the partnership between the City of Tempe and Arizona State University to study city wastewater for Coronavirus/COVID-19. Featured sections include:What is Coronavirus/COVID-19Analyzing Wastewater DataData-Driven Decision MakingWhat You Can DoFrequently Asked Questions Important ContactsPlease also see the Spanish language version.
Facebook
TwitterOn January 21, 2020, the U.S. Centers for Disease Control and Prevention (CDC) and Washington State Department of Health (DOH) announced the first case of 2019 Novel Coronavirus (COVID-19) in the United States, in Washington state. The link below provides access to DOH daily updates of confirmed Washington State COVID-19 cases and deaths, along with essential information about the virus and guidance on prevention and risk management. The link includes Frequently Asked Questions, as well as resources for specific groups such as parents, caregivers, employers, schools and health care providers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
Se derivó automáticamente la información de la licencia
Replaced by http://data.europa.eu/88u/dataset/covid-19-coronavirus-data-daily-up-to-14-december-2020
Facebook
TwitterAs of June 13, 2023, there have been almost 768 million cases of coronavirus (COVID-19) worldwide. The disease has impacted almost every country and territory in the world, with the United States confirming around 16 percent of all global cases.
COVID-19: An unprecedented crisis Health systems around the world were initially overwhelmed by the number of coronavirus cases, and even the richest and most prepared countries struggled. In the most vulnerable countries, millions of people lacked access to critical life-saving supplies, such as test kits, face masks, and respirators. However, several vaccines have been approved for use, and more than 13 billion vaccine doses had already been administered worldwide as of March 2023.
The coronavirus in the United Kingdom Over 202 thousand people have died from COVID-19 in the UK, which is the highest number in Europe. The tireless work of the National Health Service (NHS) has been applauded, but the country’s response to the crisis has drawn criticism. The UK was slow to start widespread testing, and the launch of a COVID-19 contact tracing app was delayed by months. However, the UK’s rapid vaccine rollout has been a success story, and around 53.7 million people had received at least one vaccine dose as of July 13, 2022.
Facebook
TwitterThis release provides information on:
The release was updated on 26 April with data up to 7 April.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
Se derivó automáticamente la información de la licencia
Estimates of the prevalence of self-reported long COVID and associated activity limitation, using UK Coronavirus (COVID-19) Infection Survey data. Experimental Statistics.
Facebook
TwitterAs of April 26, 2023, the number of both confirmed and presumptive positive cases of the COVID-19 disease reported in the United States had reached over 104 million with over 1.1 million deaths reported among these cases.
Coronavirus deaths by age in the U.S. Daily new cases of COVID-19 hit record highs in the United States at the beginning of 2022. Underlying health conditions can worsen cases of coronavirus, and case fatality rates among confirmed COVID-19 patients increase with age. The highest number of deaths from COVID-19 have been among those aged 85 years and older, with this age group accounting for over 300 thousand deaths.
Where has this coronavirus come from? Coronaviruses are a large group of viruses transmitted between animals and people that cause illnesses ranging from the common cold to more severe diseases. The novel coronavirus that is currently infecting humans was already circulating among certain animal species. The first human case of this new coronavirus strain was reported in China at the end of December 2019. The coronavirus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its associated disease is known as COVID-19.
Facebook
TwitterRead the associated blogpost for a detailed description of how this dataset was prepared; plus extra code for producing animated maps.
The 2019 Novel Coronavirus (COVID-19) continues to spread in countries around the world. This dataset provides daily updated number of reported cases & deaths in Germany on the federal state (Bundesland) and county (Landkreis/Stadtkreis) level. In April 2021 I added a dataset on vaccination progress. In addition, I provide geospatial shape files and general state-level population demographics to aid the analysis.
The dataset consists of thre main csv files: covid_de.csv, demgraphics_de.csv, and covid_de_vaccines.csv. The geospatial shapes are included in the de_state.* files. See the column descriptions below for more detailed information.
covid_de.csv: COVID-19 cases and deaths which will be updated daily. The original data are being collected by Germany's Robert Koch Institute and can be download through the National Platform for Geographic Data (the latter site also hosts an interactive dashboard). I reshaped and translated the data (using R tidyverse tools) to make it better accessible. This blogpost explains how I prepared the data, and describes how to produces animated maps.
demographics_de.csv: General Demographic Data about Germany on the federal state level. Those have been downloaded from Germany's Federal Office for Statistics (Statistisches Bundesamt) through their Open Data platform GENESIS. The data reflect the (most recent available) estimates on 2018-12-31. You can find the corresponding table here.
covid_de_vaccines.csv: In April 2021 I added this file that contains the Covid-19 vaccination progress for Germany as a whole. It details daily doses, broken down cumulatively by manufacturer, as well as the cumulative number of people having received their first and full vaccination. The earliest data are from 2020-12-27.
de_state.*: Geospatial shape files for Germany's 16 federal states. Downloaded via Germany's Federal Agency for Cartography and Geodesy . Specifically, the shape file was obtained from this link.
COVID-19 dataset covid_de.csv:
state: Name of the German federal state. Germany has 16 federal states. I removed converted special characters from the original data.
county: The name of the German Landkreis (LK) or Stadtkreis (SK), which correspond roughly to US counties.
age_group: The COVID-19 data is being reported for 6 age groups: 0-4, 5-14, 15-34, 35-59, 60-79, and above 80 years old. As a shortcut the last category I'm using "80-99", but there might well be persons above 99 years old in this dataset. This column has a few NA entries.
gender: Reported as male (M) or female (F). This column has a few NA entries.
date: The calendar date of when a case or death were reported. There might be delays that will be corrected by retroactively assigning cases to earlier dates.
cases: COVID-19 cases that have been confirmed through laboratory work. This and the following 2 columns are counts per day, not cumulative counts.
deaths: COVID-19 related deaths.
recovered: Recovered cases.
Demographic dataset demographics_de.csv:
state, gender, age_group: same as above. The demographic data is available in higher age resolution, but I have binned it here to match the corresponding age groups in the covid_de.csv file.
population: Population counts for the respective categories. These numbers reflect the (most recent available) estimates on 2018-12-31.
Vaccination progress dataset covid_de_vaccines.csv:
date: calendar date of vaccination
doses, doses_first, doses_second: Daily count of administered doses: total, 1st shot, 2nd shot.
pfizer_cumul, moderna_cumul, astrazeneca_cumul: Daily cumulative number of administered vaccinations by manufacturer.
persons_first_cumul, persons_full_cumul: Daily cumulative number of people having received their 1st shot and full vaccination, respectively.
All the data have been extracted from open data sources which are being gratefully acknowledged:
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
Se derivó automáticamente la información de la licencia
Antibody data, by UK country and age, from the Coronavirus (COVID-19) Infection Survey.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
Se derivó automáticamente la información de la licencia
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Here’s a polished version suitable for a professional Kaggle dataset description:
This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.
This is the primary dataset and contains aggregated COVID-19 statistics by location and date.
This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.
This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.
Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.
✅ Use covid_19_data.csv for up-to-date aggregated global trends.
✅ Use the line list datasets for detailed, individual-level case analysis.
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
India - https://www.kaggle.com/sudalairajkumar/covid19-in-india
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil
USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa
Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland
Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Johns Hopkins University for making the data available for educational and academic research purposes
MoBS lab - https://www.mobs-lab.org/2019ncov.html
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google....
Facebook
Twitter2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov