U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release contains data from the USGS field activity 2014-607-FA, a survey of the Oregon Outer Continental Shelf (OCS) Floating Wind Farm Site in 2014. The bathymetry raster was generated from bathymetry data collected by U.S. Geological Survey (USGS) during the period from August 20 to September 1, 2014 using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy Management. Contours were generated using the ESRI Contour tool in spatial analyst. The contour interval is 10 meters.
🇺🇸 미국 English Source: 1 foot contours were generated for each production block from the final bare earth DEMs using ArcGIS software. Using ArcGIS software, the contours were validated for correct topology, including must not intersect, must not self intersect, and must not have dangles. Contours are then manually reviewed with the 3D breaklines to ensure complete coverage, correct coding, data integrity and that contours behave correctly around water bodies, water crossings, and elevated features such as overpasses. The contours are then clipped to individual tiles as creating one dataset for the entire project renders the feature class un-usable. Enclosed contours completely within building footprints were removed from the final contour dataset.Coordinate System:The data was developed based on a horizontal datum/projection of NAD83 (2011), State Plane Connecticut, U.S. Survey Feet and vertical datum of NAVD88 (GEOID18)Development: This vector tile package contains contour lines originally derived in the State Plane coordinate system. Prior to generating the tile service, individual contour blocks were merged into a single, seamless data layer to ensure consistency and completeness across the project area. This unified dataset served as the basis for creating the vector tile package. During the creation of the vector tile index, Web Mercator was used as the tiling reference to enable proper indexing and tile generation within ArcGIS Online. Please note that while the vector tile index references Web Mercator for mapping and display purposes, the contour line geometries are aligned with the original State Plane coordinate system, maintaining consistency with the source data used in production. This vector tile package contains contour lines originally derived in the State Plane coordinate system. Prior to generating the tile service, individual contour blocks were merged into a single, seamless data layer to ensure consistency and completeness across the project area. This unified dataset served as the basis for creating the vector tile package. During the creation of the vector tile index, Web Mercator was used as the tiling reference to enable proper indexing and tile generation within ArcGIS Online. Please note that while the vector tile index references Web Mercator for mapping and display purposes, the contour line geometries are aligned with the original State Plane coordinate system, maintaining consistency with the source data used in production. Use Constraints:
The Long Island Sound Study developed these digital data from 1:100,000-scale National Oceanic & Atmospheric Administration (NOAA) and United States Geological Survey (USGS) maps as a general reference to the depth of water in Long Island Sound. In 1996, these data were digitized from paper maps by the Long Island Sound Study (http://www.longislandsoundstudy.net) and incorporated into a Long Island Sound GIS database. Not intended for maps printed at map scales greater or more detailed than 1:100,000 scale (1 inch = 1,578 feet.) Dataset credit: Applied Geographics, Inc. of Boston, Massachussets was contracted by the Long Island Sound Study to automate and digitize these bathymetry data for Long Island Sound. Linda Bischoff, GIS Analyst, digitized the data and created the orginal metadata.
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
Source:
1 foot contours were generated for each production block from the final bare earth DEMs using ArcGIS software. Using ArcGIS software, the contours were validated for correct topology, including must not intersect, must not self intersect, and must not have dangles. Contours are then manually reviewed with the 3D breaklines to ensure complete coverage, correct coding, data integrity and that contours behave correctly around water bodies, water crossings, and elevated features such as overpasses. The contours are then clipped to individual tiles as creating one dataset for the entire project renders the feature class un-usable. Enclosed contours completely within building footprints were removed from the final contour dataset.
Coordinate System:
The data was developed based on a horizontal datum/projection of NAD83 (2011), State Plane Connecticut, U.S. Survey Feet and vertical datum of NAVD88 (GEOID18)
Development:
This vector tile package contains contour lines originally derived in the State Plane coordinate system. Prior to generating the tile service, individual contour blocks were merged into a single, seamless data layer to ensure consistency and completeness across the project area. This unified dataset served as the basis for creating the vector tile package. During the creation of the vector tile index, Web Mercator was used as the tiling reference to enable proper indexing and tile generation within ArcGIS Online. Please note that while the vector tile index references Web Mercator for mapping and display purposes, the contour line geometries are aligned with the original State Plane coordinate system, maintaining consistency with the source data used in production. This vector tile package contains contour lines originally derived in the State Plane coordinate system. Prior to generating the tile service, individual contour blocks were merged into a single, seamless data layer to ensure consistency and completeness across the project area. This unified dataset served as the basis for creating the vector tile package. During the creation of the vector tile index, Web Mercator was used as the tiling reference to enable proper indexing and tile generation within ArcGIS Online. Please note that while the vector tile index references Web Mercator for mapping and display purposes, but the contour lines were originally in the State Plane coordinate system
Use Constraints:
There are no formal use restrictions. However, users should be aware the conditions may have changed since the data was originally collected, and some areas may no longer accurately reflect current surface features. This data should not be used for critical decision-making without a full understanding of their limitations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This submission contains a shapefile of heat flow contour lines around the FORGE site located in Milford, Utah. The model was interpolated from data points in the Milford_wells shapefile. This heat flow model was interpolated from 66 data points using the kriging method in Geostatistical Analyst tool of ArcGIS. The resulting model was smoothed 100%. The well dataset contains 59 wells from various sources, with lat/long coordinates, temperature, quality, basement depth, and heat flow. This data was used to make models of the specific characteristics.
Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 – 18,000 meters. These contours were derived from a global sediment thickness grid distributed by the National Geophysical Data Center (NGDC). The NGDC grid was compiled from various existing sediment thickness maps and drilling cores, and has a cell resolution of 5 arc seconds. Sediment thickness data is typically acquired through two methods. Seismic (or sub-bottom) profile technologies rely on powerful pulses of low-frequency sound which penetrate the substrate and return information about substrate thickness, character, and stratification. The data are collected along transect lines and require interpolation to create comprehensive maps. Sediment thickness is also determined by direct measurement through coring, which provides more detailed information but only at discrete sites. Coring data can also be interpolated to form area maps, and to help interpret the seismic data.
© NOAA National Geophysical Data Center This layer is a component of Physical Oceanographic and Marine Habitat.
MarineCadastre.gov themed service for public consumption featuring layers related to the Physical and Oceanographic and Marine Habitat themes. This map service presents spatial information about MarineCadastre.gov services across the United States and Territories in the Web Mercator projection. The service was developed by the National Oceanic and Atmospheric Administration (NOAA), but may contain data and information from a variety of data sources, including non-NOAA data. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. The NOAA Office for Coastal Management will make every effort to provide continual access to this service but it may need to be taken down during routine IT maintenance or in case of an emergency. If you plan to ingest this service into your own application and would like to be informed about planned and unplanned service outages or changes to existing services, please register for our Data Services Newsletter (http://coast.noaa.gov/digitalcoast/publications/subscribe). For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).
© MarineCadastre.gov
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick. The long-term goal of this mapping effort is to produce high-resolution geologic maps and a Geographic Information System (GIS) project that presents images and grids of bathymetry, shaded relief bathymetry, and backscatter intensity data from these surveys that will serve the needs of research, management and the public.
VT Contours, Cached, Web Mercator
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
VT Contours, Not Cached, Web Mercator
The Topographic (Vector) (World Edition) web map provides a detailed vector basemap for the world symbolized with the classic Esri topographic map style including vector contours and vector hillshade for added context. This map includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, administrative boundaries, and shaded relief for added context. This basemap is available in the United States Vector Basemaps gallery and uses the World Topographic Map (with Contours and Hillshade) multisource vector map style.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer referenced in this map.
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
description: These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 16 of the Death Valley regional ground-water flow system (DVRFS), an approximately 45,000 square-kilometer region of southern Nevada and California. The numerical ground-water flow model simulates prepumping conditions before 1913 and transient-flow conditions from 1913 to 1998 after pumping of ground water began. The DVRFS transient ground-water flow model is the most recent in a number of regional-scale models developed by the U.S. Geological Survey (USGS) for the U.S. Department of Energy (DOE) to support investigations at the Nevada Test Site (NTS) and at Yucca Mountain, Nevada (see "Larger Work Citation", Chapter A, page 8, for details).; abstract: These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 16 of the Death Valley regional ground-water flow system (DVRFS), an approximately 45,000 square-kilometer region of southern Nevada and California. The numerical ground-water flow model simulates prepumping conditions before 1913 and transient-flow conditions from 1913 to 1998 after pumping of ground water began. The DVRFS transient ground-water flow model is the most recent in a number of regional-scale models developed by the U.S. Geological Survey (USGS) for the U.S. Department of Energy (DOE) to support investigations at the Nevada Test Site (NTS) and at Yucca Mountain, Nevada (see "Larger Work Citation", Chapter A, page 8, for details).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
See full Data Guide here. Lake Bathymetry describes the water depth for selected reservoirs, lakes, ponds, and coves in Connecticut. It includes depth contours, also called bathymetric contours, that define lines of equal water depth in feet. This information was collected and compiled by the State of Connecticut, Department of Environmental Protection over a period of time using a variety of different techniques and equipment including manual depth soundings, use of an electronic depth sounder in conjunction with a GPS receiver to locate the boat, and digitizing previously published bathymetry maps. Data is compiled at a variety of scales and resolutions, depending on the collection method used for a particular waterbody. A list of the waterbodies included in this layer can be viewed in the GIS Metadata for Lake Bathymetry. This information was used to publish bathymetric maps in A Fisheries Guide to Lakes and Ponds of Connecticut, Robert P. Jacobs, Eileen B. O'Donnell, and William B. Gerrish, Connecticut Department of Environmental Protection Bulletin 35, 2002, SBN 0-942085-11-6.
This submission includes the geographic extent shapefile of the Milford FORGE site located in Utah, along with a shapefile of seismometer positions throughout the area, and models of basin depth and potentiometric contours.
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
This data package was produced by researchers working on the Shortgrass Steppe Long Term Ecological Research (SGS-LTER) Project, administered at Colorado State University. Long-term datasets and background information (proposals, reports, photographs, etc.) on the SGS-LTER project are contained in a comprehensive project collection within the Digital Collections of Colorado (http://digitool.library.colostate.edu/R/?func=collections&collection_id=3429). The data table and associated metadata document, which is generated in Ecological Metadata Language, may be available through other repositories serving the ecological research community and represent components of the larger SGS-LTER project collection. No Abstract Available Resources in this dataset:Resource Title: Website Pointer to html file. File Name: Web Page, url: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sgs&identifier=502 Webpage with information and links to data files for download
VT Hillshade Plus (hillshade + contours + hydrography), Cached, Web Mercator
This dataset consists of points representing selected well site locations and water-level measurements used by Lopes and Allander (2009) to develop autumn 2006 groundwater-level altitude contours for Smith and Mason Valleys, and the lower Walker River basin, Nevada. Since the publication of Lopes and Allander (2009), the positional coordinates and land-surface altitudes at selected well sites used to develop autumn 2006 groundwater-level contours in that report were updated as part of a 2022 U.S. Geological Survey study (Davies and Naranjo, 2022).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release contains data from the USGS field activity 2014-607-FA, a survey of the Oregon Outer Continental Shelf (OCS) Floating Wind Farm Site in 2014. The bathymetry raster was generated from bathymetry data collected by U.S. Geological Survey (USGS) during the period from August 20 to September 1, 2014 using a Reson 7111 multibeam echosounder. The mapping mission collected bathymetry data from about 163 m to 566 m depths on the Oregon outer continental shelf. The acquisition was funded by the U.S. Bureau of Ocean Energy Management. Contours were generated using the ESRI Contour tool in spatial analyst. The contour interval is 10 meters.