100+ datasets found
  1. IPUMS Contextual Determinants of Health (CDOH) Race and Ethnicity Measure:...

    • icpsr.umich.edu
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kamp Dush, Claire M.; Manning, Wendy D.; Van Riper, David (2025). IPUMS Contextual Determinants of Health (CDOH) Race and Ethnicity Measure: Income Inequity by County, United States, 2005-2022 [Dataset]. http://doi.org/10.3886/ICPSR39241.v1
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Kamp Dush, Claire M.; Manning, Wendy D.; Van Riper, David
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/39241/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39241/terms

    Time period covered
    2005 - 2022
    Area covered
    United States
    Description

    The IPUMS Contextual Determinants of Health (CDOH) data series provides access to measures of disparities, policies, and counts, by state or county, for historically marginalized populations in the United States including Black, Asian, Hispanic/Latina/o/e/x, and LGBTQ+ persons, and women. The IPUMS CDOH data are made available through ICPSR/DSDR for merging with the National Couples' Health and Time Study (NCHAT), United States, 2020-2021 (ICPSR 38417) by approved restricted data researchers. All other researchers can access the IPUMS CDOH data via the IPUMS CDOH website. Unlike other IPUMS products, the CDOH data are organized into multiple categories related to Race and Ethnicity, Sexual and Gender Minority, Gender, and Politics. The measures were created from a wide variety of data sources (e.g., IPUMS NHGIS, the Census Bureau, the Bureau of Labor Statistics, the Movement Advancement Project, and Myers Abortion Facility Database). Measures are currently available for states or counties from approximately 2015 to 2020. The Race and Ethnicity measure in this release is an indicator of income inequity which is measured using the index of concentration at the extremes (ICE). ICE is a measure of social polarization within a particular geographic unit. It shows whether people or households in a geographic unit are concentrated in privileged or deprived extremes. The privileged group in this study is the number of households with a householder identifying as White alone, not Hispanic or Latino, with an income equal to or greater than $100,000. The deprived group in this study is the number of households with a householder identifying as a different race/ethnic group (e.g., Black alone, Asian alone, Hispanic or Latino), with an income equal to or less than $25,000. To work with the IPUMS CDOH data, researchers will need to use the variable MATCH_ID to merge the data in DS1 with NCHAT surveys within the virtual data enclave (VDE).

  2. U.S. consumers websites for purchasing e-books in April 2017, by ethnicity

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, U.S. consumers websites for purchasing e-books in April 2017, by ethnicity [Dataset]. https://www.statista.com/statistics/706201/websites-to-purchase-e-books-by-ethnicity/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 4, 2017 - Apr 12, 2017
    Area covered
    United States
    Description

    The statistic shows the websites consumers used to purchase e-books in the United States in 2017, by ethnicity. During the survey, ** percent of Hispanic American or Latino respondents stated that they purchased e-books at Amazon.com or with the kindle-app.

  3. A

    RACE ETHNICITY Persons by Race NMHD 2000

    • data.amerigeoss.org
    • gstore.unm.edu
    • +1more
    csv, gml, html, json +7
    Updated Aug 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). RACE ETHNICITY Persons by Race NMHD 2000 [Dataset]. https://data.amerigeoss.org/mk/dataset/showcases/race-ethnicity-persons-by-race-nmhd-20001
    Explore at:
    csv, qgis, json, html, xml, gml, xls, zip, kml, wfs, wmsAvailable download formats
    Dataset updated
    Aug 25, 2022
    Dataset provided by
    United States
    Description

    The 2006 Second Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2006 Second Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries.

    This shapefile represents the current State House Districts for New Mexico as posted on the Census Bureau website for 2006.

  4. A

    RACE ETHNICITY Pct Persons by Hispanic Ethnicity and Race NMHD 2000

    • data.amerigeoss.org
    • gstore.unm.edu
    • +1more
    csv, gml, html, json +7
    Updated Aug 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). RACE ETHNICITY Pct Persons by Hispanic Ethnicity and Race NMHD 2000 [Dataset]. https://data.amerigeoss.org/dataset/race-ethnicity-pct-persons-by-hispanic-ethnicity-and-race-nmhd-20001
    Explore at:
    gml, xml, wfs, xls, html, zip, kml, wms, qgis, json, csvAvailable download formats
    Dataset updated
    Aug 22, 2022
    Dataset provided by
    United States
    Description

    The 2006 Second Edition TIGER/Line files are an extract of selected geographic and cartographic information from the Census TIGER database. The geographic coverage for a single TIGER/Line file is a county or statistical equivalent entity, with the coverage area based on the latest available governmental unit boundaries. The Census TIGER database represents a seamless national file with no overlaps or gaps between parts. However, each county-based TIGER/Line file is designed to stand alone as an independent data set or the files can be combined to cover the whole Nation. The 2006 Second Edition TIGER/Line files consist of line segments representing physical features and governmental and statistical boundaries.

    This shapefile represents the current State House Districts for New Mexico as posted on the Census Bureau website for 2006.

  5. Predominant Race/Ethnicity in US Elementary School Districts (2020 Census)

    • arcgis-hub-uc-2025-1-hubclub.hub.arcgis.com
    Updated Jul 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Predominant Race/Ethnicity in US Elementary School Districts (2020 Census) [Dataset]. https://arcgis-hub-uc-2025-1-hubclub.hub.arcgis.com/datasets/esri::predominant-race-ethnicity-in-us-elementary-school-districts-2020-census
    Explore at:
    Dataset updated
    Jul 11, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States
    Description

    This app's colors indicate which race/ethnicity is largest in each area. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics information about race and ethnicity for Nation, School District Unified, School District Elementary, School District Secondary in the United States and Puerto Rico.This app uses this web map which you are welcome to use in your projects. See many additional web maps available in this group as well as here in ArcGIS Living Atlas for free use in your mapping and analysis use.

  6. RACE ETHNICITY Percent Persons by Hispanic Ethnicity and Race SDs 2000

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2020). RACE ETHNICITY Percent Persons by Hispanic Ethnicity and Race SDs 2000 [Dataset]. https://catalog.data.gov/dataset/race-ethnicity-percent-persons-by-hispanic-ethnicity-and-race-sds-2000
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The New Mexico 2000 Unified School Districts layer was derived from the TIGER Line files from the US Census Bureau. The districts are clipped to the state boundaries, and available for download from the website.

  7. U.S. adult online dating usage 2019, by ethnicity

    • statista.com
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). U.S. adult online dating usage 2019, by ethnicity [Dataset]. https://www.statista.com/statistics/309458/us-adults-online-dating-site-usage-ethnicity/
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Oct 16, 2019 - Oct 28, 2019
    Area covered
    United States
    Description

    This statistic presents the percentage of adults in the United States who have used online dating sites or apps as of October 2019, by ethnicity. During the survey it was found that 29 percent of white, non-Hispanic adults had used online dating platforms.

  8. U.S. distribution of race and ethnicity among the military 2019

    • statista.com
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. distribution of race and ethnicity among the military 2019 [Dataset]. https://www.statista.com/statistics/214869/share-of-active-duty-enlisted-women-and-men-in-the-us-military/
    Explore at:
    Dataset updated
    Jan 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the fiscal year of 2019, 21.39 percent of active-duty enlisted women were of Hispanic origin. The total number of active duty military personnel in 2019 amounted to 1.3 million people.

    Ethnicities in the United States The United States is known around the world for the diversity of its population. The Census recognizes six different racial and ethnic categories: White American, Native American and Alaska Native, Asian American, Black or African American, Native Hawaiian and Other Pacific Islander. People of Hispanic or Latino origin are classified as a racially diverse ethnicity.

    The largest part of the population, about 61.3 percent, is composed of White Americans. The largest minority in the country are Hispanics with a share of 17.8 percent of the population, followed by Black or African Americans with 13.3 percent. Life in the U.S. and ethnicity However, life in the United States seems to be rather different depending on the race or ethnicity that you belong to. For instance: In 2019, native Hawaiians and other Pacific Islanders had the highest birth rate of 58 per 1,000 women, while the birth rae of white alone, non Hispanic women was 49 children per 1,000 women.

    The Black population living in the United States has the highest poverty rate with of all Census races and ethnicities in the United States. About 19.5 percent of the Black population was living with an income lower than the 2020 poverty threshold. The Asian population has the smallest poverty rate in the United States, with about 8.1 percent living in poverty.

    The median annual family income in the United States in 2020 earned by Black families was about 57,476 U.S. dollars, while the average family income earned by the Asian population was about 109,448 U.S. dollars. This is more than 25,000 U.S. dollars higher than the U.S. average family income, which was 84,008 U.S. dollars.

  9. Race & Ethnicity 2022 (all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Race & Ethnicity 2022 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/b57e042f1c9e49c887d3bb048dd56daa
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  10. a

    Justice40 Disadvantaged or Partially Disadvantaged Tracts by Race/Ethnicity...

    • atlas-connecteddmv.hub.arcgis.com
    • regionaldatahub-brag.hub.arcgis.com
    Updated Jun 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2022). Justice40 Disadvantaged or Partially Disadvantaged Tracts by Race/Ethnicity (Archive) [Dataset]. https://atlas-connecteddmv.hub.arcgis.com/maps/945b3f2e39a64569ab2d0700a527361b
    Explore at:
    Dataset updated
    Jun 10, 2022
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map uses an archive of Version 1.0 of the CEJST data as a fully functional GIS layer. See an archive of the latest version of the CEJST tool using Version 2.0 of the data released in December 2024 here.This map shows Census tracts throughout the US based on if they are considered disadvantaged or partially disadvantaged according to Justice40 Initiative criteria. This is overlaid with the most recent American Community Survey (ACS) figures from the U.S. Census Bureau to communicate the predominant race that lives within these disadvantaged or partially disadvantaged tracts. Predominance helps us understand the group of population which has the largest count within an area. Colors are more transparent if the predominant race has a similar count to another race/ethnicity group. The colors on the map help us better understand the predominant race or ethnicity:Hispanic or LatinoWhite Alone, not HispanicBlack or African American Alone, not HispanicAsian Alone, not HispanicAmerican Indian and Alaska Native Alone, not HispanicTwo or more races, not HispanicNative Hawaiian and Other Pacific Islander, not HispanicSome other race, not HispanicSearch for any region, city, or neighborhood throughout the US, DC, and Puerto Rico to learn more about the population in the disadvantaged tracts. Click on any tract to learn more. Zoom to your area, filter to your county or state, and save this web map focused on your area to share the pattern with others. You can also use this web map within an ArcGIS app such as a dashboard, instant app, or story. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.Note: Justice40 tracts use 2010-based boundaries, while the most recent ACS figures are offered on 2020-based boundaries. When you click on an area, there will be multiple pop-ups returned due to the differences in these boundaries. From Justice40 data source:"Census tract geographical boundaries are determined by the U.S. Census Bureau once every ten years. This tool utilizes the census tract boundaries from 2010 because they match the datasets used in the tool. The U.S. Census Bureau will update these tract boundaries in 2020.Under the current formula, a census tract will be identified as disadvantaged in one or more categories of criteria:IF the tract is above the threshold for one or more environmental or climate indicators AND the tract is above the threshold for the socioeconomic indicatorsCommunities are identified as disadvantaged by the current version of the tool for the purposes of the Justice40 Initiative if they are located in census tracts that are at or above the combined thresholds in one or more of eight categories of criteria.The goal of the Justice40 Initiative is to provide 40 percent of the overall benefits of certain Federal investments in [eight] key areas to disadvantaged communities. These [eight] key areas are: climate change, clean energy and energy efficiency, clean transit, affordable and sustainable housing, training and workforce development, the remediation and reduction of legacy pollution, [health burdens] and the development of critical clean water infrastructure." Source: Climate and Economic Justice Screening toolPurpose"Sec. 219. Policy. To secure an equitable economic future, the United States must ensure that environmental and economic justice are key considerations in how we govern. That means investing and building a clean energy economy that creates well‑paying union jobs, turning disadvantaged communities — historically marginalized and overburdened — into healthy, thriving communities, and undertaking robust actions to mitigate climate change while preparing for the impacts of climate change across rural, urban, and Tribal areas. Agencies shall make achieving environmental justice part of their missions by developing programs, policies, and activities to address the disproportionately high and adverse human health, environmental, climate-related and other cumulative impacts on disadvantaged communities, as well as the accompanying economic challenges of such impacts. It is therefore the policy of my Administration to secure environmental justice and spur economic opportunity for disadvantaged communities that have been historically marginalized and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastructure, and health care." Source: Executive Order on Tackling the Climate Crisis at Home and AbroadUse of this Data"The pilot identifies 21 priority programs to immediately begin enhancing benefits for disadvantaged communities. These priority programs will provide a blueprint for other agencies to help inform their work to implement the Justice40 Initiative across government." Source: The Path to Achieving Justice 40

  11. ACS 2020 Race Ethnicity

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    Updated Apr 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2022). ACS 2020 Race Ethnicity [Dataset]. https://gisdata.fultoncountyga.gov/maps/a2a9562f602e419e9a52bd9c6297b26c
    Explore at:
    Dataset updated
    Apr 20, 2022
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.

    For a deep dive into the data model including every specific metric, see the ACS 2016-2020 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    s

    Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed

    Suffixes:

    _e20

    Estimate from 2016-20 ACS

    _m20

    Margin of Error from 2016-20 ACS

    _e10

    2006-10 ACS, re-estimated to 2020 geography

    _m10

    Margin of Error from 2006-10 ACS, re-estimated to 2020 geography

    _e10_20

    Change, 2010-20 (holding constant at 2020 geography)

    Geographies

    AAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)

    ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)

    Census Tracts (statewide)

    CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)

    City (statewide)

    City of Atlanta Council Districts (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit (City of Atlanta)

    City of Atlanta Neighborhood Planning Unit STV (subarea of City of Atlanta)

    City of Atlanta Neighborhood Statistical Areas (City of Atlanta)

    County (statewide)

    Georgia House (statewide)

    Georgia Senate (statewide)

    MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)

    Regional Commissions (statewide)

    State of Georgia (statewide)

    Superdistrict (ARC region)

    US Congress (statewide)

    UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)

    WFF = Westside Future Fund (subarea of City of Atlanta)

    ZIP Code Tabulation Areas (statewide)

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2016-2020). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Source: U.S. Census Bureau, Atlanta Regional Commission Date: 2016-2020 Data License: Creative Commons Attribution 4.0 International (CC by 4.0)

    Link to the manifest: https://opendata.atlantaregional.com/documents/GARC::acs-2020-data-manifest/about

  12. Race/Ethnicity (by State of Georgia) 2019

    • opendata.atlantaregional.com
    • fultoncountyopendata-fulcogis.opendata.arcgis.com
    • +1more
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Race/Ethnicity (by State of Georgia) 2019 [Dataset]. https://opendata.atlantaregional.com/datasets/race-ethnicity-by-state-of-georgia-2019
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  13. 2018 American Community Survey: EEOALL1R | EEO 1R. DETAILED CENSUS...

    • data.census.gov
    Updated Nov 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2023). 2018 American Community Survey: EEOALL1R | EEO 1R. DETAILED CENSUS OCCUPATION BY SEX AND RACE/ETHNICITY FOR RESIDENCE GEOGRAPHY (ACS 5-Year Estimates Equal Employment Opportunity) [Dataset]. https://data.census.gov/cedsci/table?q=eeo
    Explore at:
    Dataset updated
    Nov 16, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2018
    Description

    The EEO Tabulation is sponsored by four Federal agencies consisting of the Equal Employment Opportunity Commission (EEOC), the Employment Litigation Section of the Civil Rights Division at the Department of Justice (DOJ), the Office of Federal Contract Compliance Programs (OFCCP), and the Office of Personnel Management (OPM), and developed in conjunction with the U.S. Census Bureau..Supporting documentation on code lists and subject definitions can be found on the Equal Employment Opportunity Tabulation website. https://www.census.gov/topics/employment/equal-employment-opportunity-tabulation.html.Source: U.S. Census Bureau, 2014-2018 American Community Survey.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see https://www.census.gov/programs-surveys/acs/technical-documentation.html The effect of nonsampling error is not represented in these tables)..The U.S. Census Bureau collects race data in accordance with guidelines provided by the U.S. Office of Management and Budget (OMB). Except for the total, all race and ethnicity categories are mutually exclusive. "Black" refers to Black or African American; "AIAN" refers to American Indian and Alaska Native; and "NHPI" refers to Native Hawaiian and Other Pacific Islander. "Balance of Not Hispanic or Latino" includes the balance of non-Hispanic individuals who reported multiple races or reported Some Other Race alone. For more information on race and Hispanic origin, see the Subject Definitions at https://www.census.gov/programs-surveys/acs/technical-documentation.html..Race and Hispanic origin are separate concepts on the American Community Survey. "White alone Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported race as "White" and no other race. "All other Hispanic or Latino" includes respondents who reported Hispanic or Latino origin and reported a race other than "White," either alone or in combination..Occupation titles and their 4-digit codes are based on the 2018 Standard Occupational Classification..The 2014-2018 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Explanation of Symbols:An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution, or the margin of error associated with a median was larger than the median itself.An "(X)" means that the estimate is not applicable or not available.An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution.An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution.

  14. H

    Diversity Data: Metropolitan Quality of Life Data

    • data.niaid.nih.gov
    • dataverse.harvard.edu
    Updated Jan 11, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). Diversity Data: Metropolitan Quality of Life Data [Dataset]. http://doi.org/10.7910/DVN/FQINUJ
    Explore at:
    Dataset updated
    Jan 11, 2011
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can obtain descriptions, maps, profiles, and ranks of U.S. metropolitan areas pertaining to quality of life, diversity, and opportunities for racial and ethnic groups in the U.S. BackgroundThe Diversity Data project operates a website for users to explore how U.S. metropolitan areas perform on evidence-based social measures affecting quality of life, diversity and opportunity for racial and ethnic groups in the United States. These indicators capture a broad definition of quality of life and health, including opportunities for good schools, housing, jobs, wages, health and social services, and safe neighborhoods. This is a useful resource for people inter ested in advocating for policy and social change regarding neighborhood integration, residential mobility, anti-discrimination in housing, urban renewal, school quality and economic opportunities. The Diversity Data project is an ongoing project of the Harvard School of Public Health (Department of Society, Human Development and Health). User FunctionalityUsers can obtain a description, profile and rank of U.S. metropolitan areas and compare ranks across metropolitan areas. Users can also generate maps which demonstrate the distribution of these measures across the United States. Demographic information is available by race/ethnicity. Data NotesData are derived from multiple sources including: the U.S. Census Bureau; National Center for Health Statistics' Vital Statistics Natality Birth Data; Natio nal Center for Education Statistics; Union CPS Utilities Data CD; National Low Income Housing Coalition; Freddie Mac Conventional Mortgage Home Price Index; Neighborhood Change Database; Joint Center for Housing Studies of Harvard University; Federal Financial Institutions Examination Council Home Mortgage Disclosure Act (HMD); Dr. Russ Lopez, Boston University School of Public Health, Department of Environmental Health; HUD State of the Cities Data Systems; Agency for Healthcare Research and Quality; and Texas Transportation Institute. Years in which the data were collected are indicated with the measure. Information is available for metropolitan areas. The website does not indicate when the data are updated.

  15. Race & Ethnicity 2023 (all geographies, statewide)

    • opendata.atlantaregional.com
    • gisdata.fultoncountyga.gov
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). Race & Ethnicity 2023 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/c6eb71b15db04fc894e660a861534cf8
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  16. Educational Attainment of Washington Population by Age, Race/Ethnicity/, and...

    • data.wa.gov
    • s.cnmilf.com
    • +2more
    application/rdfxml +5
    Updated May 16, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington Student Achievement Council (2019). Educational Attainment of Washington Population by Age, Race/Ethnicity/, and PUMA Region [Dataset]. https://data.wa.gov/Education/Educational-Attainment-of-Washington-Population-by/aqa5-4cee
    Explore at:
    application/rdfxml, csv, application/rssxml, json, tsv, xmlAvailable download formats
    Dataset updated
    May 16, 2019
    Dataset authored and provided by
    Washington Student Achievement Council
    Area covered
    Washington
    Description

    The American Community Survey (ACS) is designed to estimate the characteristic distribution of populations* and estimated counts should only be used to calculate percentages. They do not represent the actual population counts or totals. Beginning in 2019, the Washington Student Achievement Council (WSAC) has measured educational attainment for the Roadmap Progress Report using one-year American Community Survey (ACS) data from the United States Census Bureau. These public microdata represents the most current data, but it is limited to areas with larger populations leading to some multi-county regions**.

    *The American Community Survey is not the official source of population counts. It is designed to show the characteristics of the nation's population and should not be used as actual population counts or housing totals for the nation, states or counties. The official population count — including population by age, sex, race and Hispanic origin — comes from the once-a-decade census, supplemented by annual population estimates (which do not typically contain educational attainment variables) from the following groups and surveys:
    -- Washington State Office of Financial Management (OFM): https://www.ofm.wa.gov/washington-data-research/population-demographics -- US Census Decennial Census: https://www.census.gov/programs-surveys/decennial-census.html and Population Estimates Program: https://www.census.gov/programs-surveys/popest.html

    **In prior years, WSAC used both the five-year and three-year (now discontinued) data. While the 5-year estimates provide a larger sample, they are not recommended for year to year trends and also are released later than the one-year files.

    Detailed information about the ACS at https://www.census.gov/programs-surveys/acs/guidance.html

  17. Race/Ethnicity (by Georgia House) 2017

    • gisdata.fultoncountyga.gov
    Updated Jun 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). Race/Ethnicity (by Georgia House) 2017 [Dataset]. https://gisdata.fultoncountyga.gov/datasets/bd60179e343b4902b4f7e6a988c9b116
    Explore at:
    Dataset updated
    Jun 21, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show population by race/ethnicity and change data by Georgia House in the Atlanta region. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website. Naming conventions: Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)Suffixes:NoneChange over two periods_eEstimate from most recent ACS_mMargin of Error from most recent ACS_00Decennial 2000 Attributes: SumLevelSummary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)GEOIDCensus tract Federal Information Processing Series (FIPS) code NAMEName of geographic unitPlanning_RegionPlanning region designation for ARC purposesAcresTotal area within the tract (in acres)SqMiTotal area within the tract (in square miles)CountyCounty identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)CountyNameCounty NameTotPop_e# Total population, 2017TotPop_m# Total population, 2017 (MOE)Hisp_e# Hispanic or Latino (of any race), 2017Hisp_m# Hispanic or Latino (of any race), 2017 (MOE)pHisp_e% Hispanic or Latino (of any race), 2017pHisp_m% Hispanic or Latino (of any race), 2017 (MOE)Not_Hisp_e# Not Hispanic or Latino, 2017Not_Hisp_m# Not Hispanic or Latino, 2017 (MOE)pNot_Hisp_e% Not Hispanic or Latino, 2017pNot_Hisp_m% Not Hispanic or Latino, 2017 (MOE)NHWhite_e# Not Hispanic, White alone, 2017NHWhite_m# Not Hispanic, White alone, 2017 (MOE)pNHWhite_e% Not Hispanic, White alone, 2017pNHWhite_m% Not Hispanic, White alone, 2017 (MOE)NHBlack_e# Not Hispanic, Black or African American alone, 2017NHBlack_m# Not Hispanic, Black or African American alone, 2017 (MOE)pNHBlack_e% Not Hispanic, Black or African American alone, 2017pNHBlack_m% Not Hispanic, Black or African American alone, 2017 (MOE)NH_AmInd_e# Not Hispanic, American Indian and Alaska Native alone, 2017NH_AmInd_m# Not Hispanic, American Indian and Alaska Native alone, 2017 (MOE)pNH_AmInd_e% Not Hispanic, American Indian and Alaska Native alone, 2017pNH_AmInd_m% Not Hispanic, American Indian and Alaska Native alone, 2017 (MOE)NH_Asian_e# Not Hispanic, Asian alone, 2017NH_Asian_m# Not Hispanic, Asian alone, 2017 (MOE)pNH_Asian_e% Not Hispanic, Asian alone, 2017pNH_Asian_m% Not Hispanic, Asian alone, 2017 (MOE)NH_PacIsl_e# Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017NH_PacIsl_m# Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017 (MOE)pNH_PacIsl_e% Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017pNH_PacIsl_m% Not Hispanic, Native Hawaiian and Other Pacific Islander alone, 2017 (MOE)NH_OthRace_e# Not Hispanic, some other race alone, 2017NH_OthRace_m# Not Hispanic, some other race alone, 2017 (MOE)pNH_OthRace_e% Not Hispanic, some other race alone, 2017pNH_OthRace_m% Not Hispanic, some other race alone, 2017 (MOE)NH_TwoRace_e# Not Hispanic, two or more races, 2017NH_TwoRace_m# Not Hispanic, two or more races, 2017 (MOE)pNH_TwoRace_e% Not Hispanic, two or more races, 2017pNH_TwoRace_m% Not Hispanic, two or more races, 2017 (MOE)NH_AsianPI_e# Non-Hispanic Asian or Pacific Islander, 2017NH_AsianPI_m# Non-Hispanic Asian or Pacific Islander, 2017 (MOE)pNH_AsianPI_e% Non-Hispanic Asian or Pacific Islander, 2017pNH_AsianPI_m% Non-Hispanic Asian or Pacific Islander, 2017 (MOE)NH_Other_e# Non-Hispanic other (Native American, other one race, two or more races), 2017NH_Other_m# Non-Hispanic other (Native American, other one race, two or more races), 2017 (MOE)pNH_Other_e% Non-Hispanic other (Native American, other one race, two or more races), 2017pNH_Other_m% Non-Hispanic other (Native American, other one race, two or more races), 2017 (MOE)last_edited_dateLast date the feature was edited by ARC Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2013-2017 For additional information, please visit the Census ACS website.

  18. 2016 Economic Surveys: SE1600CSCB29 | Statistics for U.S. Employer Firms by...

    • data.census.gov
    Updated Aug 16, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ECN (2018). 2016 Economic Surveys: SE1600CSCB29 | Statistics for U.S. Employer Firms by Duration of Business Banking Relationship by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 (ECNSVY Annual Survey of Entrepreneurs Annual Survey of Entrepreneurs Characteristics of Businesses) [Dataset]. https://data.census.gov/table/ASECB2016.SE1600CSCB29?q=Du+Moulin+Construction
    Explore at:
    Dataset updated
    Aug 16, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ECN
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2016
    Area covered
    United States
    Description

    Release Date: 2018-08-10.[NOTE: Includes firms with payroll at any time during 2016. Employment reflects the number of paid employees during the March 12 pay period. Data are based on Census administrative records, and the estimates of business ownership by gender, ethnicity, race, and veteran status are from the 2016 Annual Survey of Entrepreneurs. Detail may not add to total due to rounding or because a Hispanic firm may be of any race. Moreover, each owner had the option of selecting more than one race and therefore is included in each race selected. Respondent firms include all firms that responded to the characteristic(s) tabulated in this dataset and reported gender, ethnicity, race, or veteran status or that were publicly held or not classifiable by gender, ethnicity, race, or veteran status. Percentages are for respondent firms only and are not recalculated when the dataset is resorted. Percentages are always based on total reporting (defined above) within a gender, ethnicity, race, veteran status, and/or industry group for the characteristics tabulated in this dataset. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. and state totals for all sectors. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Survey Methodology.]..Table Name. . Statistics for U.S. Employer Firms by Duration of Business Banking Relationship by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016. ..Release Schedule. . This file was released in August 2018.. ..Key Table Information. . These data are related to all other 2016 ASE files.. Refer to the Methodology section of the Annual Survey of Entrepreneurs website for additional information.. ..Universe. . The universe for the 2016 Annual Survey of Entrepreneurs (ASE) includes all U.S. firms with paid employees operating during 2016 with receipts of $1,000 or more which are classified in the North American Industry Classification System (NAICS) sectors 11 through 99, except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered. Firms with more than one domestic establishment are counted in each geographic area and industry in which they operate, but only once in the U.S. total.. In this file, "respondent firms" refers to all firms that reported gender, ethnicity, race, or veteran status for at least one owner or returned a survey form with at least one item completed and were publicly held or not classifiable by gender, ethnicity, race, and veteran status.. ..Geographic Coverage. . The data are shown for:. . United States. States and the District of Columbia. The fifty most populous metropolitan areas. . ..Industry Coverage. . The data are shown for the total of all sectors (00) and the 2-digit NAICS code level.. ..Data Items and Other Identifying Records. . Statistics for U.S. Employer Firms by Duration of Business Banking Relationship by Sector, Gender, Ethnicity, Race, Veteran Status, and Years in Business for the U.S., States, and Top 50 MSAs: 2016 contains data on:. . Number of firms with paid employees. Sales and receipts for firms with paid employees. Number of employees for firms with paid employees. Annual payroll for firms with paid employees. Percent of respondent firms with paid employees. Percent of sales and receipts of respondent firms with paid employees. Percent of number of employees of respondent firms with paid employees. Percent of annual payroll of respondent firms with paid employees. . The data are shown for:. . Gender, ethnicity, race and veteran status of respondent firms. . All firms. Female-owned. Male-owned. Equally male-/female-owned. Hispanic. Equally Hispanic/non-Hispanic. Non-Hispanic. White. Black or African American. American Indian and Alaska Native. Asian. Native Hawaiian and Other Pacific Islander. Some other race. Minority. Equally minority/nonminority. Nonminority. Veteran-owned. Equally veteran-/nonveteran-owned. Nonveteran-owned. All firms classifiable by gender, ethnicity, race, and veteran status. Publicly held and other firms not classifiable by gender, ethnicity, race, and veteran status. . . Years in business. . All firms. Firms less than 2 years in business. Firms with 2 to 3 years in business. Firms with 4 to 5 years in business. Firms with 6 to 10 years in business. Firms with 11 to 15 years in busines...

  19. D

    Race and Ethnicity - Seattle Neighborhoods

    • data.seattle.gov
    • catalog.data.gov
    • +2more
    application/rdfxml +5
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Race and Ethnicity - Seattle Neighborhoods [Dataset]. https://data.seattle.gov/dataset/Race-and-Ethnicity-Seattle-Neighborhoods/r4ar-x7dx
    Explore at:
    xml, application/rdfxml, csv, tsv, json, application/rssxmlAvailable download formats
    Dataset updated
    Oct 22, 2024
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on race and ethnicity related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B03002 Hispanic or Latino Origin by Race, B02008-B02013 Race Alone or in Combination with One or More. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.


    Table created for and used in the Neighborhood Profiles application.

    Vintages: 2023


    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb(year)a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states,

  20. Census of Population and Housing, 2000 [United States]: Summary File 1,...

    • search.datacite.org
    • icpsr.umich.edu
    Updated 2001
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau Of The Census (2001). Census of Population and Housing, 2000 [United States]: Summary File 1, States [Dataset]. http://doi.org/10.3886/icpsr03194
    Explore at:
    Dataset updated
    2001
    Dataset provided by
    DataCitehttps://www.datacite.org/
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau Of The Census
    Description

    Summary File 1 contains 100-percent United States decennial Census data, which is the information compiled from the questions asked of all people and about every housing unit. Population items include sex, age, race, Hispanic or Latino origin, household relationship, and group quarters occupancy. Housing items include occupancy status, vacancy status, and tenure (owner occupied or renter occupied). There are a total of 171 population tables ("P") and 56 housing tables ("H") provided down to the block level, and 59 population tables provided down to the census tract level ("PCT") for a total of 286 tables. In addition, 14 population tables and 4 housing tables at the block level and 4 population tables at the census tract level are repeated by major race and Hispanic or Latino groups. The data present population and housing characteristics for the total population, population totals for an extensive list of race (American Indian and Alaska Native tribes, Asian, Native Hawaiian, and Other Pacific Islander) and Hispanic or Latino groups, and population and housing characteristics for a limited list of race and Hispanic or Latino groups. Population and housing items may be crosstabulated. Selected aggregates and medians also are provided. Summary File 1 is released in the form of individual files for each of the 50 states, the District of Columbia, and Puerto Rico.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kamp Dush, Claire M.; Manning, Wendy D.; Van Riper, David (2025). IPUMS Contextual Determinants of Health (CDOH) Race and Ethnicity Measure: Income Inequity by County, United States, 2005-2022 [Dataset]. http://doi.org/10.3886/ICPSR39241.v1
Organization logo

IPUMS Contextual Determinants of Health (CDOH) Race and Ethnicity Measure: Income Inequity by County, United States, 2005-2022

Explore at:
Dataset updated
Feb 25, 2025
Dataset provided by
Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
Authors
Kamp Dush, Claire M.; Manning, Wendy D.; Van Riper, David
License

https://www.icpsr.umich.edu/web/ICPSR/studies/39241/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39241/terms

Time period covered
2005 - 2022
Area covered
United States
Description

The IPUMS Contextual Determinants of Health (CDOH) data series provides access to measures of disparities, policies, and counts, by state or county, for historically marginalized populations in the United States including Black, Asian, Hispanic/Latina/o/e/x, and LGBTQ+ persons, and women. The IPUMS CDOH data are made available through ICPSR/DSDR for merging with the National Couples' Health and Time Study (NCHAT), United States, 2020-2021 (ICPSR 38417) by approved restricted data researchers. All other researchers can access the IPUMS CDOH data via the IPUMS CDOH website. Unlike other IPUMS products, the CDOH data are organized into multiple categories related to Race and Ethnicity, Sexual and Gender Minority, Gender, and Politics. The measures were created from a wide variety of data sources (e.g., IPUMS NHGIS, the Census Bureau, the Bureau of Labor Statistics, the Movement Advancement Project, and Myers Abortion Facility Database). Measures are currently available for states or counties from approximately 2015 to 2020. The Race and Ethnicity measure in this release is an indicator of income inequity which is measured using the index of concentration at the extremes (ICE). ICE is a measure of social polarization within a particular geographic unit. It shows whether people or households in a geographic unit are concentrated in privileged or deprived extremes. The privileged group in this study is the number of households with a householder identifying as White alone, not Hispanic or Latino, with an income equal to or greater than $100,000. The deprived group in this study is the number of households with a householder identifying as a different race/ethnic group (e.g., Black alone, Asian alone, Hispanic or Latino), with an income equal to or less than $25,000. To work with the IPUMS CDOH data, researchers will need to use the variable MATCH_ID to merge the data in DS1 with NCHAT surveys within the virtual data enclave (VDE).

Search
Clear search
Close search
Google apps
Main menu