The data represent web-scraping of hyperlinks from a selection of environmental stewardship organizations that were identified in the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017). There are two data sets: 1) the original scrape containing all hyperlinks within the websites and associated attribute values (see "README" file); 2) a cleaned and reduced dataset formatted for network analysis. For dataset 1: Organizations were selected from from the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017), a publicly available, spatial data set about environmental stewardship organizations working in New York City, USA (N = 719). To create a smaller and more manageable sample to analyze, all organizations that intersected (i.e., worked entirely within or overlapped) the NYC borough of Staten Island were selected for a geographically bounded sample. Only organizations with working websites and that the web scraper could access were retained for the study (n = 78). The websites were scraped between 09 and 17 June 2020 to a maximum search depth of ten using the snaWeb package (version 1.0.1, Stockton 2020) in the R computational language environment (R Core Team 2020). For dataset 2: The complete scrape results were cleaned, reduced, and formatted as a standard edge-array (node1, node2, edge attribute) for network analysis. See "READ ME" file for further details. References: R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Version 4.0.3. Stockton, T. (2020). snaWeb Package: An R package for finding and building social networks for a website, version 1.0.1. USDA Forest Service. (2017). Stewardship Mapping and Assessment Project (STEW-MAP). New York City Data Set. Available online at https://www.nrs.fs.fed.us/STEW-MAP/data/. This dataset is associated with the following publication: Sayles, J., R. Furey, and M. Ten Brink. How deep to dig: effects of web-scraping search depth on hyperlink network analysis of environmental stewardship organizations. Applied Network Science. Springer Nature, New York, NY, 7: 36, (2022).
In a survey conducted in the UK and U.S. in June 2024, approximately ** percent of respondents said they'd like to see online search results that better fit what they are looking for, and another ** percent said they'd like to see better filtering.
This dataset provides information on 1,603 in Michigan, United States as of June, 2025. It includes details such as email addresses (where publicly available), phone numbers (where publicly available), and geocoded addresses. Explore market trends, identify potential business partners, and gain valuable insights into the industry. Download a complimentary sample of 10 records to see what's included.
Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.This map displays Federal administrative agencies from the USGS Protected Areas Database of the United States version 3.0. The layer includes fee simple parcels (where available) from authoritative data sources symbolized from the “Manager Name” field. This service does not include designations that often overlap state, private or other in-holdings. Department of Defense internal land ownership is not represented but is implied Federal. See the USA Protected Areas - Federal Management Agencies feature layer for a combined view of fee ownership, designations, and easements.This map displays locations from the PAD-US version 3.0 symbolized with the manager name field. This map includes a feature layer at scales of 1:1,000,000 and larger and a vector tile layer at scales smaller than 1:1,000,000.PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.This map is part of the ArcGIS Living Atlas of the World. The Living Atlas provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics.
Reddit is a web traffic powerhouse: in March 2024 approximately 2.2 billion visits were measured to the online forum, making it one of the most-visited websites online. The front page of the internet Formerly known as “the front page of the internet”, Reddit is an online forum platform with over 130,000 sub-forums and communities. The platform allows registered users, called Redditors, to post content. Each post is open to the entire Reddit community to vote upon, either by down- or upvotes. The most popular posts are featured directly on the front page. Subreddits are available by category and Redditors can follow selected subreddits relevant to their interest and also control what content they see on their custom front page. Some of the most popular subreddits are r/AskReddit or r/AMA – the “Ask Me Anything” format. According to the company, Reddit hosted 1,800 AMAs in 2018, with a wide range of topics and hosts. One of the most popular Reddit AMA of 2022 by number of upvotes was by actor Nicolas Cagem with more than 238.5 thousand upvotes. Reddit usage The United States account for the biggest share of Reddit's desktop traffic, followed by the UK, and Canada. As of March 2023, Reddit ranked among the most popular social media websites in the United States.
NCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps.
This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu
Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications.
Maps are best when viewed with RED/CYAN anaglyph glasses!
A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.
World Map: 3-D map that highlights oceanic bathymetry and plate boundaries.
Continental United States: 3-D grayscale map of the Lower 48.
Western United States: 3-D grayscale map of the Western United States with state boundaries.
Regional Map: 3-D greyscale map stretching from Hudson Bay to the Central Great Plains. This map includes the Western Great Lakes and the Canadian Shield.
Minnesota Map: 3-D greyscale map of Minnesota with county and state boundaries.
Twin Cities: 3-D map extending beyond Minneapolis and St. Paul.
Twin Cities Confluence Map: 3-D map highlighting the confluence of the Mississippi and Minnesota Rivers. This map includes most of Minneapolis and St. Paul.
Minneapolis, MN: 3-D topographical map of South Minneapolis.
Bassets Creek, Minneapolis: 3-D topographical map of the Bassets Creek watershed.
North Minneapolis: 3-D topographical map highlighting North Minneapolis and the Mississippi River.
St. Paul, MN: 3-D topographical map of St. Paul.
Western Suburbs, Twin Cities: 3-D topographical map of St. Louis Park, Hopkins and Minnetonka area.
Minnesota River Valley Suburbs, Twin Cities: 3-D topographical map of Bloomington, Eden Prairie and Edina area.
Southern Suburbs, Twin Cities: 3-D topographical map of Burnsville, Lakeville and Prior Lake area.
Southeast Suburbs, Twin Cities: 3-D topographical map of South St. Paul, Mendota Heights, Apple Valley and Eagan area.
Northeast Suburbs, Twin Cities: 3-D topographical map of White Bear Lake, Maplewood and Roseville area.
Northwest Suburbs, Mississippi River, Twin Cities: 3-D topographical map of North Minneapolis, Brooklyn Center and Maple Grove area.
Blaine, MN: 3-D map of Blaine and the Mississippi River.
White Bear Lake, MN: 3-D topographical map of White Bear Lake and the surrounding area.
Maple Grove, MN: 3-D topographical mmap of the NW suburbs of the Twin Cities.
This public use dataset has 11 data elements reflecting COVID-19 community levels for all available counties. This dataset contains the same values used to display information available at https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels-county-map.html. CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium , or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals. See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information. Visit CDC’s COVID Data Tracker County View* to learn more about the individual metrics used for CDC’s COVID-19 community level in your county. Please note that county-level data are not available for territories. Go to https://covid.cdc.gov/covid-data-tracker/#county-view. For the most accurate and up-to-date data for any county or state, visit the relevant health department website. *COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
As of March of 2018, around 52 percent of Americans felt that online news websites regularly report fake news stories in the United States. Another 34 percent of respondents stated that they believed that online news websites occasionally report fake news stories. Just nine percent of adults said that they did not believe that fake news stories were being reported online.
Fake news
Coined by Donald Trump, the term ‘fake news’ is used to describe news stories or even entire networks believed to be spreading false information. Increasingly used by members of government and citizens on both sides of the political spectrum, the term is now a staple in debates regarding freedom of the press, corruption, and media bias. People of all ages now believe that over 60 percent of the news that they see on social media is fake and express similar concern over the accuracy of traditional news sources. While a cynical perspective regarding news and reporting may be positive in terms of holding guilty outlets accountable and ensuring responsible reporting, the fake news phenomenon has extended much farther than pure skepticism. As of 2018, around 35 percent of Republicans and 18 percent of Independents perceived the media to be an enemy of the American people.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The category "Has a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer. The category "No computer" consists of those who said "No" to all of these types of computers..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at https://www.census.gov/library/working-papers/2017/acs/2017_Lewis_01.html or the user note regarding changes in the 2016 questions located at https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes/2017-03.html..The category "With a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types. The category "Without an Internet subscription" includes those who accessed the Internet without a subscription and also those with no Internet access at all..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient numbe...
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The data represent web-scraping of hyperlinks from a selection of environmental stewardship organizations that were identified in the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017). There are two data sets: 1) the original scrape containing all hyperlinks within the websites and associated attribute values (see "README" file); 2) a cleaned and reduced dataset formatted for network analysis. For dataset 1: Organizations were selected from from the 2017 NYC Stewardship Mapping and Assessment Project (STEW-MAP) (USDA 2017), a publicly available, spatial data set about environmental stewardship organizations working in New York City, USA (N = 719). To create a smaller and more manageable sample to analyze, all organizations that intersected (i.e., worked entirely within or overlapped) the NYC borough of Staten Island were selected for a geographically bounded sample. Only organizations with working websites and that the web scraper could access were retained for the study (n = 78). The websites were scraped between 09 and 17 June 2020 to a maximum search depth of ten using the snaWeb package (version 1.0.1, Stockton 2020) in the R computational language environment (R Core Team 2020). For dataset 2: The complete scrape results were cleaned, reduced, and formatted as a standard edge-array (node1, node2, edge attribute) for network analysis. See "READ ME" file for further details. References: R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Version 4.0.3. Stockton, T. (2020). snaWeb Package: An R package for finding and building social networks for a website, version 1.0.1. USDA Forest Service. (2017). Stewardship Mapping and Assessment Project (STEW-MAP). New York City Data Set. Available online at https://www.nrs.fs.fed.us/STEW-MAP/data/. This dataset is associated with the following publication: Sayles, J., R. Furey, and M. Ten Brink. How deep to dig: effects of web-scraping search depth on hyperlink network analysis of environmental stewardship organizations. Applied Network Science. Springer Nature, New York, NY, 7: 36, (2022).