39 datasets found
  1. Share of Americans investing money in the stock market 1999-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2024 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2024
    Area covered
    United States
    Description

    In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  2. Share of households owning mutual funds in the U.S. 1980-2023

    • statista.com
    Updated Sep 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Share of households owning mutual funds in the U.S. 1980-2023 [Dataset]. https://www.statista.com/statistics/246224/mutual-funds-owned-by-american-households/
    Explore at:
    Dataset updated
    Sep 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, 52 percent of the households in the United States owned shares in a mutual fund. This is a significant increase on the 5.7 percent recorded in 1980, but close to 46.3 percent found in 2013.Mutual fundsA mutual fund is a variety of collective investment vehicle, managed professionally that pools money from many investors in order to purchase securities. They play an important role in household finances in the United States of today, most notably in retirement planning. It is commonly applied only to the forms of collective investment that are regulated and are sold to the public at large. The majority of mutual funds are what is known as ‘open-ended’, meaning that shares can be bought or sold at anytime. There are a number of advantages associated with mutual funds as opposed to direct investment in individual securities. The nature of the fund as a collective investment vehicle provides increased diversification and ease of comparison to investors. The fact that they are managed professionally, and that the investment is pooled, enables participation in investments that would normally only be available to larger investors. Mutual funds are also stable in price as daily liquidity ensures minimum loss of value. Despite several advantages, as with every aspect of investment some disadvantages are to be taken into account. Fees are an inevitable part of a professionally managed fund, as is the inability to customize the investment. A common complains is also that the investor has less control over timing of the recognition of their gains.

  3. F

    Share of Corporate Equities and Mutual Fund Shares Held by the Top 1% (99th...

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Share of Corporate Equities and Mutual Fund Shares Held by the Top 1% (99th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBST01122
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Corporate Equities and Mutual Fund Shares Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBST01122) from Q3 1989 to Q1 2025 about mutual funds, wealth, equity, percentile, corporate, and USA.

  4. Countries with largest stock markets globally 2025

    • statista.com
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with largest stock markets globally 2025 [Dataset]. https://www.statista.com/statistics/710680/global-stock-markets-by-country/
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    In 2025, stock markets in the United States accounted for roughly ** percent of world stocks. The next largest country by stock market share was China, followed by the European Union as a whole. The New York Stock Exchange (NYSE) and the NASDAQ are the largest stock exchange operators worldwide. What is a stock exchange? The first modern publicly traded company was the Dutch East Industry Company, which sold shares to the general public to fund expeditions to Asia. Since then, groups of companies have formed exchanges in which brokers and dealers can come together and make transactions in one space. Stock market indices group companies trading on a given exchange, giving an idea of how they evolve in real time. Appeal of stock ownership Over half of adults in the United States are investing money in the stock market. Stocks are an attractive investment because the possible return is higher than offered by other financial instruments.

  5. US Stocks Dataset

    • kaggle.com
    Updated Oct 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Atif Latif (2024). US Stocks Dataset [Dataset]. https://www.kaggle.com/datasets/matiflatif/us-stocks-datasetby-atif/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 5, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    M Atif Latif
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    US Stock Market Data (21st November 2023 – 2nd February 2024)

    Overview

    This dataset provides detailed historical data on the US stock market, covering the period from 21st November 2023 to 2nd February 2024. It includes daily performance metrics for major stocks and indices, enabling investors, analysts, and researchers to study short-term market trends, fluctuations, and patterns.

    Dataset Contents

    The dataset contains the following key attributes for each trading day:

    Date: The trading date.

    Ticker: Stock ticker symbol (e.g., AAPL for Apple, MSFT for Microsoft).

    Open Price: The price at which the stock opened for trading.

    Close Price: The price at which the stock closed for trading . High Price: The highest price reached during the trading session.

    Low Price: The lowest price reached during the trading session.

    Adjusted Close Price: The closing price adjusted for splits and dividend payouts.

    Trading Volume: The total number of shares traded on that day.

    Highlights

    Time Period: Covers daily data for over two months of trading activity.

    Market Scope: Includes data from a diverse set of stocks, industries, and sectors, reflecting the broader US market trends.

    Indices and Major Stocks: Tracks key indices (e.g., S&P 500, NASDAQ) and major stocks across various sectors .

    Potential Applications

    Analyzing short-term market performance trends. Developing trading strategies or backtesting investment models. Exploring the impact of macroeconomic events on stock performance. Studying sector-wise performance in the US stock market.

    Data Source

    The data has been sourced from publicly available market records, ensuring reliability and accuracy. Each data point represents an official trading record from the respective exchange.

    Usage Notes

    The dataset is intended for educational, analytical, and research purposes only. Users should be mindful of potential market anomalies or external factors influencing data during this time frame.

    Acknowledgments

    Special thanks to the organizations and platforms that make financial market data accessible for analysis and research.

  6. b

    Stock Trading & Investing App Revenue and Usage Statistics (2025)

    • businessofapps.com
    Updated Oct 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2021). Stock Trading & Investing App Revenue and Usage Statistics (2025) [Dataset]. https://www.businessofapps.com/data/stock-trading-app-market/
    Explore at:
    Dataset updated
    Oct 8, 2021
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Like several other app industries, stock trading and investment saw a huge spike in usage during the coronavirus pandemic. Millions of people stuck at home were able to take advantage of new...

  7. Share of leading stocks held by Millennials in the U.S. Q2 2021

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of leading stocks held by Millennials in the U.S. Q2 2021 [Dataset]. https://www.statista.com/statistics/1176009/millennials-leading-stock-holdings-usa/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 30, 2021
    Area covered
    United States
    Description

    As of June 2020, **** percent of Millennial investors in the United States owned AMC Entertainment stock. Millennials, also known as Generation Y, were born between 1981 and 1996, and account for over ** percent of the U.S. population.

  8. F

    Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles)...

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBSTP1300
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Net Worth Held by the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBSTP1300) from Q3 1989 to Q1 2025 about shares, net worth, wealth, percentile, Net, and USA.

  9. US Stock Market Data

    • kaggle.com
    zip
    Updated Jan 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammed Obeidat (2023). US Stock Market Data [Dataset]. https://www.kaggle.com/datasets/mohammedobeidat/us-stock-market-data/code
    Explore at:
    zip(42432995 bytes)Available download formats
    Dataset updated
    Jan 14, 2023
    Authors
    Mohammed Obeidat
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The dataset contains the file required for training and testing and split accordingly.

    There are two groups of features that you can use for prediction:

    1. Fundamentals and ratios: Values collected form statements and balance sheets for each ticker
    2. Technical indicators and strategy flags: Technical indicators calculated on close value of each day and buy and sell signals generated using some commonly used trading strategies.

    Files found in Fundamentals folder is a processed format of the files found in raw folder. Ratios and other values are stretched to match the length of the closing price column such that the value in the pe_ratio column for example is the PE ratio from the most recent quarter and this applies for every column.

    Technical indicators are calculated with the default parameters used in Pandas_TA package.

    Data is collected form finance.yahoo.com and macrotrends.net Timeframe for the given data is different from one ticker to another because of unavailability of some stocks for a given time frame on either of the websites.

    All code required to collect the data and perform preprocessing and feature engineering to get the data in the given format can be found in the following notebooks:

    1. https://www.kaggle.com/code/mohammedobeidat/us-stocks-data-collection
    2. https://www.kaggle.com/code/mohammedobeidat/us-stocks-technicals-feature-engineering-and-eda
    3. https://www.kaggle.com/code/mohammedobeidat/us-stocks-fundamentals-preprocessing-and-eda

    Files

    • {<>_ticker_train}.csv - the training set
    • {<>_ticker_train}.csv - the test set

    Columns

    Columns names are supposed to be self-explanatory assuming you are familiar with the stock market. Some acronyms you may encounter:

    1. tmm is short for Trailing Twelve Months
    2. pe is short for Price to Earnings
    3. pb is short for Price to Book Value
    4. ps is short for Price to Sales
    5. fcf is short for Free Cash Flow
    6. eps is short for Earnings per Share
  10. United States US: International Migrant Stock: Total

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: International Migrant Stock: Total [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-international-migrant-stock-total
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1960 - Dec 1, 2015
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: International Migrant Stock: Total data was reported at 46,627,102.000 Person in 2015. This records an increase from the previous number of 44,183,643.000 Person for 2010. United States US: International Migrant Stock: Total data is updated yearly, averaging 21,371,383.500 Person from Dec 1960 (Median) to 2015, with 12 observations. The data reached an all-time high of 46,627,102.000 Person in 2015 and a record low of 10,825,599.000 Person in 1960. United States US: International Migrant Stock: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. International migrant stock is the number of people born in a country other than that in which they live. It also includes refugees. The data used to estimate the international migrant stock at a particular time are obtained mainly from population censuses. The estimates are derived from the data on foreign-born population--people who have residence in one country but were born in another country. When data on the foreign-born population are not available, data on foreign population--that is, people who are citizens of a country other than the country in which they reside--are used as estimates. After the breakup of the Soviet Union in 1991 people living in one of the newly independent countries who were born in another were classified as international migrants. Estimates of migrant stock in the newly independent states from 1990 on are based on the 1989 census of the Soviet Union. For countries with information on the international migrant stock for at least two points in time, interpolation or extrapolation was used to estimate the international migrant stock on July 1 of the reference years. For countries with only one observation, estimates for the reference years were derived using rates of change in the migrant stock in the years preceding or following the single observation available. A model was used to estimate migrants for countries that had no data.; ; United Nations Population Division, Trends in Total Migrant Stock: 2012 Revision.; Sum;

  11. Beat US Stock market (2019 edition)

    • kaggle.com
    Updated Jan 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Carbone (2020). Beat US Stock market (2019 edition) [Dataset]. https://www.kaggle.com/datasets/cnic92/beat-us-stock-market-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 13, 2020
    Dataset provided by
    Kaggle
    Authors
    Nicolas Carbone
    Description

    Context

    The algorithmic trading space is buzzing with new strategies. Companies have spent billions in infrastructures and R&D to be able to jump ahead of the competition and beat the market. Still, it is well acknowledged that the buy & hold strategy is able to outperform many of the algorithmic strategies, especially in the long-run. However, finding value in stocks is an art that very few mastered, can a computer do that?

    Content

    This Data repo contains two datasets:

    1. Example_2019_price_var.csv. I built this dataset thanks to Financial Modeling Prep API and to pandas_datareader. Each row is a stock from the technology sector of the US stock market (that is available from the aforementioned API, which is free and highly recommended). The column contains the percent price variation of each stock for the year 2019. In other words, it collects the percent price variation of each stock from the first trading day on Jan 2019 to the last trading day of Dec 2019. To compute this price variation I decided to consider the Adjusted Close Price.

    2. Example_DATASET.csv. I built this dataset thanks to Financial Modeling Prep API. Each row is a stock from the technology sector of the US stock market (that is available from the aforementioned API). Each column is a financial indicator that can be found in the 2018 10-K filings of each company. There are no Nans or empty cells. Furthermore, the last column is the CLASS of each stock, where:

      1. class = 1 if the price of the stock increases during 2019
      2. class = 0 if the price of the stock decreases during 2019

    In other words, the last column is used to classify each stock in buy-worthy or not, and this relationship is what should allow a machine learning model to learn to recognize stocks that will increase their value from those that won't.

    NOTE: the number of stocks does not match between the two datasets because the API did not have all the required financial indicators for some stocks. It is possible to remove from Example_2019_price_var.csv those rows that do not appear in Example_DATASET.csv.

    Inspiration

    I built this dataset during the 2019 winter holidays period, because I wanted to answer a simple question: is it possible to have a machine learning model learn the differences between stocks that perform well and those that don't, and then leverage this knowledge in order to predict which stock will be worth buying? Moreover, is it possible to achieve this simply by looking at financial indicators found in the 10-K filings?

  12. Vital Signs: Population – Bay Area shares (updated October 2019)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Oct 16, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Finance (2019). Vital Signs: Population – Bay Area shares (updated October 2019) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Population-Bay-Area-shares-updated-Oct/sufg-ed7z
    Explore at:
    csv, json, application/rssxml, application/rdfxml, xml, tsvAvailable download formats
    Dataset updated
    Oct 16, 2019
    Dataset authored and provided by
    California Department of Financehttps://dof.ca.gov/
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Population (LU1)

    FULL MEASURE NAME Population estimates

    LAST UPDATED October 2019

    DESCRIPTION Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.

    DATA SOURCES U.S Census Bureau: Decennial Census No link available (1960-1990) http://factfinder.census.gov (2000-2010)

    California Department of Finance: Population and Housing Estimates Table E-6: County Population Estimates (1961-1969) Table E-4: Population Estimates for Counties and State (1971-1989) Table E-8: Historical Population and Housing Estimates (2001-2018) Table E-5: Population and Housing Estimates (2011-2019) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    U.S. Census Bureau: Decennial Census - via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University Population Estimates (1970 - 2010) http://www.s4.brown.edu/us2010/index.htm

    U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2011-2017) http://factfinder.census.gov

    U.S. Census Bureau: Intercensal Estimates Estimates of the Intercensal Population of Counties (1970-1979) Intercensal Estimates of the Resident Population (1980-1989) Population Estimates (1990-1999) Annual Estimates of the Population (2000-2009) Annual Estimates of the Population (2010-2017) No link available (1970-1989) http://www.census.gov/popest/data/metro/totals/1990s/tables/MA-99-03b.txt http://www.census.gov/popest/data/historical/2000s/vintage_2009/metro.html https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) All legal boundaries and names for Census geography (metropolitan statistical area, county, city, and tract) are as of January 1, 2010, released beginning November 30, 2010, by the U.S. Census Bureau. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of August 2019. For more information on PDA designation see http://gis.abag.ca.gov/website/PDAShowcase/.

    Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970 -2010) and the American Community Survey (2008-2012 5-year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.

    Population estimates for Bay Area PDAs are from the decennial Census (1970 - 2010) and the American Community Survey (2006-2010 5 year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Population estimates for PDAs are derived from Census population counts at the tract level for 1970-1990 and at the block group level for 2000-2017. Population from either tracts or block groups are allocated to a PDA using an area ratio. For example, if a quarter of a Census block group lies with in a PDA, a quarter of its population will be allocated to that PDA. Tract-to-PDA and block group-to-PDA area ratios are calculated using gross acres. Estimates of population density for PDAs use gross acres as the denominator.

    Annual population estimates for metropolitan areas outside the Bay Area are from the Census and are benchmarked to each decennial Census. The annual estimates in the 1990s were not updated to match the 2000 benchmark.

    The following is a list of cities and towns by geographical area: Big Three: San Jose, San Francisco, Oakland Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville Unincorporated: all unincorporated towns

  13. US Stock Market and Commodities Data (2020-2024)

    • kaggle.com
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Ehsan (2024). US Stock Market and Commodities Data (2020-2024) [Dataset]. https://www.kaggle.com/datasets/muhammadehsan02/us-stock-market-and-commodities-data-2020-2024/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 1, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Muhammad Ehsan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The US_Stock_Data.csv dataset offers a comprehensive view of the US stock market and related financial instruments, spanning from January 2, 2020, to February 2, 2024. This dataset includes 39 columns, covering a broad spectrum of financial data points such as prices and volumes of major stocks, indices, commodities, and cryptocurrencies. The data is presented in a structured CSV file format, making it easily accessible and usable for various financial analyses, market research, and predictive modeling. This dataset is ideal for anyone looking to gain insights into the trends and movements within the US financial markets during this period, including the impact of major global events.

    Key Features and Data Structure

    The dataset captures daily financial data across multiple assets, providing a well-rounded perspective of market dynamics. Key features include:

    • Commodities: Prices and trading volumes for natural gas, crude oil, copper, platinum, silver, and gold.
    • Cryptocurrencies: Prices and volumes for Bitcoin and Ethereum, including detailed 5-minute interval data for Bitcoin.
    • Stock Market Indices: Data for major indices such as the S&P 500 and Nasdaq 100.
    • Individual Stocks: Prices and volumes for major companies including Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta.

    The dataset’s structure is designed for straightforward integration into various analytical tools and platforms. Each column is dedicated to a specific asset's daily price or volume, enabling users to perform a wide range of analyses, from simple trend observations to complex predictive models. The inclusion of intraday data for Bitcoin provides a detailed view of market movements.

    Applications and Usability

    This dataset is highly versatile and can be utilized for various financial research purposes:

    • Market Analysis: Track the performance of key assets, compare volatility, and study correlations between different financial instruments.
    • Risk Assessment: Analyze the impact of commodity price movements on related stock prices and evaluate market risks.
    • Educational Use: Serve as a resource for teaching market trends, asset correlation, and the effects of global events on financial markets.

    The dataset’s daily updates ensure that users have access to the most current data, which is crucial for real-time analysis and decision-making. Whether for academic research, market analysis, or financial modeling, the US_Stock_Data.csv dataset provides a valuable foundation for exploring the complexities of financial markets over the specified period.

    Acknowledgements:

    This dataset would not be possible without the contributions of Dhaval Patel, who initially curated the US stock market data spanning from 2020 to 2024. Full credit goes to Dhaval Patel for creating and maintaining the dataset. You can find the original dataset here: US Stock Market 2020 to 2024.

  14. Population Estimates: Housing Unit Estimates for US, States, and Counties

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Population Estimates: Housing Unit Estimates for US, States, and Counties [Dataset]. https://catalog.data.gov/dataset/population-estimates-housing-unit-estimates-for-us-states-and-counties
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    Annual Housing Unit Estimates for the United States, States, and Counties: April 1, 2010 to July 1, 2019 // Source: U.S. Census Bureau, Population Division // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 housing units due to the Count Question Resolution program and geographic program revisions // Each year, the Census Bureau's Population and Housing Unit Estimates Program utilizes current data on new residential construction, placements of manufactured housing, and housing unit loss to calculate change in the housing stock since the most recent decennial census, and produces a time series of housing unit estimates. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2019) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the entire estimates series is revised. Additional information, including historical and intercensal estimates, evaluation estimates, demographic analysis, research papers, and methodology is available on website: https://www.census.gov/programs-surveys/popest.html.

  15. T

    INTERNATIONAL MIGRANT STOCK PERCENT OF POPULATION WB DATA.HTMLES by Country...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). INTERNATIONAL MIGRANT STOCK PERCENT OF POPULATION WB DATA.HTMLES by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/international-migrant-stock-percent-of-population-wb-data.htmles?continent=america
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for INTERNATIONAL MIGRANT STOCK PERCENT OF POPULATION WB DATA.HTMLES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  16. Top 100 NASDAQ daily stock prices

    • kaggle.com
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven Van Ingelgem (2025). Top 100 NASDAQ daily stock prices [Dataset]. https://www.kaggle.com/datasets/svaningelgem/nasdaq-100-daily-stock-prices
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 22, 2025
    Dataset provided by
    Kaggle
    Authors
    Steven Van Ingelgem
    Description

    Top 100 by market cap stocks on the NASDAQ from 1962-01-02 till 2025-06-20.

    The Nasdaq Stock Market (National Association of Securities Dealers Automated Quotations Stock Market) is an American stock exchange based in New York City. It is the most active stock trading venue in the US by volume, and ranked second on the list of stock exchanges by market capitalization of shares traded, behind the New York Stock Exporter. The exchange platform is owned by Nasdaq, Inc., which also owns the Nasdaq Nordic stock market network and several U.S.-based stock and options exchanges.

    More info: https://en.wikipedia.org/wiki/Nasdaq

  17. m

    SJW Group Common Stock - Net-Receivables

    • macro-rankings.com
    csv, excel
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). SJW Group Common Stock - Net-Receivables [Dataset]. https://www.macro-rankings.com/markets/stocks/sjw-nasdaq/balance-sheet/net-receivables
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Net-Receivables Time Series for SJW Group Common Stock. H2O America, through its subsidiaries, provides water utility and other related services in the United States. The company engages in the production, purchase, storage, purification, distribution, wholesale, and retail sale of water and wastewater services; and supplies groundwater from wells, surface water from watershed run-off and diversion, reclaimed water, and imported water purchased from Santa Clara Valley Water District. It also offers non-tariffed services, including water system operations, maintenance agreements, and antenna site leases; contracted services, sewer operations, and other water related services; and a Linebacker protection plan for public drinking water customers in Connecticut and Maine. In addition, the company provides water services to approximately 232,000 connections that serve approximately one million people residing in portions of the cities of San Jose and Cupertino and in the cities of Campbell, Monte Sereno, Saratoga and the Town of Los Gatos, and adjacent unincorporated territories in the County of Santa Clara in the State of California; water service to approximately 142,000 service connections, which serve a population of approximately 463,000 people in 81 municipalities with a service area of approximately 275 square miles in Connecticut and Maine and approximately 3,000 wastewater connections in Southbury, Connecticut; approximately 29,000 service connections that serve approximately 88,000 people in a service area comprising more than 271 square miles in the region between San Antonio and Austin, Texas and approximately 1,000 wastewater connections. Further, it owns undeveloped land in California; and commercial properties and parcels of land in Connecticut. The company was formerly known as SJW Group and changed its name to H2O America in Ma 2025. H2O America was incorporated in 1985 and is headquartered in San Jose, California.

  18. f

    Data_Sheet_1_Catch and Length Models in the Stock Synthesis Framework:...

    • frontiersin.figshare.com
    docx
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Merrill B. Rudd; Jason M. Cope; Chantel R. Wetzel; James Hastie (2023). Data_Sheet_1_Catch and Length Models in the Stock Synthesis Framework: Expanded Application to Data-Moderate Stocks.docx [Dataset]. http://doi.org/10.3389/fmars.2021.663554.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    Frontiers
    Authors
    Merrill B. Rudd; Jason M. Cope; Chantel R. Wetzel; James Hastie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Many fisheries in the world are data-moderate, with data types (e.g., total removals, abundance indices, and biological composition data) of varied quality (e.g., limited time series or representative samples) or available data. Integrated stock assessments are useful tools for data-moderate fisheries as they can include all available information, can be updated due to the availability of more information over time, and can directly test the inclusion and exclusion of specific data types. This study uses the simulation testing and systematic data reduction from the US West Coast benchmark assessments to examine the performance of Stock Synthesis with catch and length (SS-CL) compositions only. The simulation testing of various life histories, recruitment variabilities, and data availability scenarios found that the correctly specified SS-CL can estimate unbiased key population quantities such as stock status with as little as 1 year of length data although 5 years or more may be more reliable. The error in key population quantities is decreased with an increase in years and the sample size of length data. The removal of the length compositions from benchmark assessments often caused large model deviations in the outputs compared to the removal of other data sources, indicating the importance of length data in integrated models. Models with catch and length data, excluding abundance indices and age composition, generally provided informative estimates of the stock status relative to the reference model, with most data scenarios falling within the CIs of the reference model. The results of simulation analysis and systematic data reduction indicated that SS-CL is potentially viable for data-moderate assessments in the USA, thus reducing precautionary buffers on catch limits for many stocks previously assessed in a lower tier using catch-only models. SS-CL could also be applied to many stocks around the world, maximizing the use of data available via the well tested, multifeature benefits of SS.

  19. Lao People’s Democratic Republic Portfolio equity net inflows

    • knoema.com
    csv, json, sdmx, xls
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2025). Lao People’s Democratic Republic Portfolio equity net inflows [Dataset]. https://knoema.com/atlas/Lao-Peoples-Democratic-Republic/topics/Economy/Balance-of-Payments-Capital-and-financial-account/Portfolio-equity-net-inflows
    Explore at:
    xls, sdmx, csv, jsonAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Knoemahttp://knoema.com/
    Time period covered
    2012 - 2023
    Area covered
    Laos
    Variables measured
    Portfolio equity net inflows in current prices
    Description

    Portfolio equity net inflows of Lao People’s Democratic Republic plummeted by 229.95% from 135,137 US dollars in 2022 to -175,607 US dollars in 2023. Since the 646.80% surge in 2020, portfolio equity net inflows sank by 80.85% in 2023. Portfolio equity includes net inflows from equity securities other than those recorded as direct investment and including shares, stocks, depository receipts (American or global), and direct purchases of shares in local stock markets by foreign investors.

  20. d

    AFSC/REFM: Alaska Stock Assessment Results Archive (SARA)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Jun 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2025). AFSC/REFM: Alaska Stock Assessment Results Archive (SARA) [Dataset]. https://catalog.data.gov/dataset/afsc-refm-alaska-stock-assessment-results-archive-sara1
    Explore at:
    Dataset updated
    Jun 1, 2025
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    Each year over 50 Alaskan groundfish stock assessments report the condition of Alaskan fisheries resources in the U.S. Exclusive Economic Zone. Stock assessment scientists integrate biological observations and theoretical considerations via population modeling techniques to produce population dynamic trends and biological yield estimation. This data set captures various stock assessment trends and estimations.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Share of Americans investing money in the stock market 1999-2024 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
Organization logo

Share of Americans investing money in the stock market 1999-2024

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 25, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
1999 - 2024
Area covered
United States
Description

In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

Search
Clear search
Close search
Google apps
Main menu