Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
Top of Atmosphere (TOA) reflectance data in bands from the USGS Landsat 5 and Landsat 8 satellites were accessed via Google Earth Engine. CANUE staff used Google Earth Engine functions to create cloud free annual composites, and mask water features, then export the resulting band data. NDVI indices were calculated as (band 4 - Band 3)/(Band 4 Band 3) for Landsat 5 data, and as (band 5 - band 4)/(band 5 Band 4) for Landsat 8 data. These composites are created from all the scenes in each annual period beginning from the first day of the year and continuing to the last day of the year. No data were available for 2012, due to decommissioning of Landsat 5 in 2011 prior to the start of Landsat 8 in 2013. No cross-calibration between the sensors was performed, please be aware there may be small bias differences between NDVI values calculated using Landsat 5 and Landsat 8. Final NDVI metrics were linked to all 6-digit DMTI Spatial single link postal code locations in Canada, and for surrounding areas within 100m, 250m, 500m, and 1km.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Management
• Create and edit fusion tables
• Upload imagery, vector, and tabular data using Fusion Tables and KMLs
• Share data with other Google Earth Engine (GEE) users as well as download imagery after manipulation in GEE.
Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"
https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Training Classifiers, Supervised Classification and Error Assessment • How to add raster and vector data from the catalog in Google Earth Engine; • Train a classifier; • Perform the error assessment; • Download the results.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Fast flood extent monitoring with SAR change detection using Google Earth Engine This dataset develops a tool for near real-time flood monitoring through a novel combining of multi-temporal and multi-source remote sensing data. We use a SAR change detection and thresholding method, and apply sensitivity analytics and thresholding calibration, using SAR-based and optical-based indices in a format that is streamlined, reproducible, and geographically agile. We leverage the massive repository of satellite imagery and planetary-scale geospatial analysis tools of GEE to devise a flood inundation extent model that is both scalable and replicable. The flood extents from the 2021 Hurricane Ida and the 2017 Hurricane Harvey were selected to test the approach. The methodology provides a fast, automatable, and geographically reliable tool for assisting decision-makers and emergency planners using near real-time multi-temporal satellite SAR data sets. GEE code was developed by Ebrahim Hamidi and reviewed by Brad G. Peter; Figures were created by Brad G. Peter. This tool accompanies a publication Hamidi et al., 2023: E. Hamidi, B. G. Peter, D. F. Muñoz, H. Moftakhari and H. Moradkhani, "Fast Flood Extent Monitoring with SAR Change Detection Using Google Earth Engine," in IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2023.3240097. GEE input datasets: Methodology flowchart: Sensitivity Analysis: GEE code (muti-source and multi-temporal flood monitoring): https://code.earthengine.google.com/7f4942ab0c73503e88287ad7e9187150 The threshold sensitivity analysis is automated in the below GEE code: https://code.earthengine.google.com/a3fbfe338c69232a75cbcd0eb6bc0c8e The above scripts can be run independently. The threshold automation code identifies the optimal threshold values for use in the flood monitoring procedure. GEE code for Hurricane Harvey, east of Houston Java script: // Study Area Boundaries var bounds = /* color: #d63000 */ee.Geometry.Polygon( [[[-94.5214452285728, 30.165244882083663], [-94.5214452285728, 29.56024879238989], [-93.36650748443218, 29.56024879238989], [-93.36650748443218, 30.165244882083663]]], null, false); // [before_start,before_end,after_start,after_end,k_ndfi,k_ri,k_diff,mndwi_threshold] var params = ['2017-06-01','2017-06-15','2017-08-01','2017-09-10',1.0,0.25,0.8,0.4] // SAR Input Data var before_start = params[0] var before_end = params[1] var after_start = params[2] var after_end = params[3] var polarization = "VH" var pass_direction = "ASCENDING" // k Coeficient Values for NDFI, RI and DII SAR Indices (Flooded Pixel Thresholding; Equation 4) var k_ndfi = params[4] var k_ri = params[5] var k_diff = params[6] // MNDWI flooded pixels Threshold Criteria var mndwi_threshold = params[7] // Datasets ----------------------------------- var dem = ee.Image("USGS/3DEP/10m").select('elevation') var slope = ee.Terrain.slope(dem) var swater = ee.Image('JRC/GSW1_0/GlobalSurfaceWater').select('seasonality') var collection = ee.ImageCollection('COPERNICUS/S1_GRD') .filter(ee.Filter.eq('instrumentMode', 'IW')) .filter(ee.Filter.listContains('transmitterReceiverPolarisation', polarization)) .filter(ee.Filter.eq('orbitProperties_pass', pass_direction)) .filter(ee.Filter.eq('resolution_meters', 10)) .filterBounds(bounds) .select(polarization) var before = collection.filterDate(before_start, before_end) var after = collection.filterDate(after_start, after_end) print("before", before) print("after", after) // Generating Reference and Flood Multi-temporal SAR Data ------------------------ // Mean Before and Min After ------------------------ var mean_before = before.mean().clip(bounds) var min_after = after.min().clip(bounds) var max_after = after.max().clip(bounds) var mean_after = after.mean().clip(bounds) Map.addLayer(mean_before, {min: -29.264204107025904, max: -8.938093778644141, palette: []}, "mean_before",0) Map.addLayer(min_after, {min: -29.29334290990966, max: -11.928313976797138, palette: []}, "min_after",1) // Flood identification ------------------------ // NDFI ------------------------ var ndfi = mean_before.abs().subtract(min_after.abs()) .divide(mean_before.abs().add(min_after.abs())) var ndfi_filtered = ndfi.focal_mean({radius: 50, kernelType: 'circle', units: 'meters'}) // NDFI Normalization ----------------------- var ndfi_min = ndfi_filtered.reduceRegion({ reducer: ee.Reducer.min(), geometry: bounds, scale: 10, maxPixels: 1e13 }) var ndfi_max = ndfi_filtered.reduceRegion({ reducer: ee.Reducer.max(), geometry: bounds, scale: 10, maxPixels: 1e13 }) var ndfi_rang = ee.Number(ndfi_max.get('VH')).subtract(ee.Number(ndfi_min.get('VH'))) var ndfi_subtctMin = ndfi_filtered.subtract(ee.Number(ndfi_min.get('VH'))) var ndfi_norm = ndfi_subtctMin.divide(ndfi_rang) Map.addLayer(ndfi_norm, {min: 0.3862747346632676, max: 0.7632898395906615}, "ndfi_norm",0) var histogram = ui.Chart.image.histogram({ image: ndfi_norm, region: bounds, scale: 10, maxPixels: 1e13 })...
KML is a file format used to display geographic data in an Earth browser such as Google Earth. This dataset contains KML files used to display the NSF/NCAR HIAPER GV flight track in real-time during the DEEPWAVE project.
APISCRAPY, your premier provider of Map Data solutions. Map Data encompasses various information related to geographic locations, including Google Map Data, Location Data, Address Data, and Business Location Data. Our advanced Google Map Data Scraper sets us apart by extracting comprehensive and accurate data from Google Maps and other platforms.
What sets APISCRAPY's Map Data apart are its key benefits:
Accuracy: Our scraping technology ensures the highest level of accuracy, providing reliable data for informed decision-making. We employ advanced algorithms to filter out irrelevant or outdated information, ensuring that you receive only the most relevant and up-to-date data.
Accessibility: With our data readily available through APIs, integration into existing systems is seamless, saving time and resources. Our APIs are easy to use and well-documented, allowing for quick implementation into your workflows. Whether you're a developer building a custom application or a business analyst conducting market research, our APIs provide the flexibility and accessibility you need.
Customization: We understand that every business has unique needs and requirements. That's why we offer tailored solutions to meet specific business needs. Whether you need data for a one-time project or ongoing monitoring, we can customize our services to suit your needs. Our team of experts is always available to provide support and guidance, ensuring that you get the most out of our Map Data solutions.
Our Map Data solutions cater to various use cases:
B2B Marketing: Gain insights into customer demographics and behavior for targeted advertising and personalized messaging. Identify potential customers based on their geographic location, interests, and purchasing behavior.
Logistics Optimization: Utilize Location Data to optimize delivery routes and improve operational efficiency. Identify the most efficient routes based on factors such as traffic patterns, weather conditions, and delivery deadlines.
Real Estate Development: Identify prime locations for new ventures using Business Location Data for market analysis. Analyze factors such as population density, income levels, and competition to identify opportunities for growth and expansion.
Geospatial Analysis: Leverage Map Data for spatial analysis, urban planning, and environmental monitoring. Identify trends and patterns in geographic data to inform decision-making in areas such as land use planning, resource management, and disaster response.
Retail Expansion: Determine optimal locations for new stores or franchises using Location Data and Address Data. Analyze factors such as foot traffic, proximity to competitors, and demographic characteristics to identify locations with the highest potential for success.
Competitive Analysis: Analyze competitors' business locations and market presence for strategic planning. Identify areas of opportunity and potential threats to your business by analyzing competitors' geographic footprint, market share, and customer demographics.
Experience the power of APISCRAPY's Map Data solutions today and unlock new opportunities for your business. With our accurate and accessible data, you can make informed decisions, drive growth, and stay ahead of the competition.
[ Related tags: Map Data, Google Map Data, Google Map Data Scraper, B2B Marketing, Location Data, Map Data, Google Data, Location Data, Address Data, Business location data, map scraping data, Google map data extraction, Transport and Logistic Data, Mobile Location Data, Mobility Data, and IP Address Data, business listings APIs, map data, map datasets, map APIs, poi dataset, GPS, Location Intelligence, Retail Site Selection, Sentiment Analysis, Marketing Data Enrichment, Point of Interest (POI) Mapping]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PLEASE NOTE:
_ GEEBAM is an interim product and there is no ground truthing or assessment of accuracy. Fire Extent and Severity Mapping (FESM) data should be used for accurate information on fire severity and loss of biomass in relation to bushfires._
The intention of this dataset was to provide a rapid assessment of fire impact.
In collaboration with the University of NSW, the NSW Department of Planning Infrastructure and Environment (DPIE) Remote Sensing and Landscape Science team has developed a rapid mapping approach to find out where wildfires in NSW have affected vegetation. We call it the Google Earth Engine Burnt Area Map (GEEBAM) and it relies on Sentinel 2 satellite imagery. The product output is a TIFF image with a resolution of 15m. Burnt Area Classes:
Little change observed between pre and post fire
Canopy unburnt - A green canopy within the fire ground that may act as refugia for native fauna, may be affected by fire
Canopy partially affected - A mix of burnt and unburnt canopy vegetation
Canopy fully affected -The canopy and understorey are most likely burnt
Using GEEBAM at a local scale requires visual interpretation with reference to satellite imagery. This will ensure the best results for each fire or vegetation class.
Important Note: GEEBAM is an interim product and there is no ground truthing or assessment of accuracy. It is updated fortnightly.
Please see Google Earth Engine Burnt Area Factsheet
Normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the TERRA satellites were accessed via Google Earth Engine. These NDVI data are provided as 16-Day composites at 250 m spatial resolution for all of Canada as far back as 2000. The MODIS NDVI product is computed from atmospherically corrected surface reflectances that have been masked for water, clouds, and aerosols . CANUE staff created annual and growing season composites from the 16-day day, and exported the results within the bounding coordinates -140 to -52 degrees longitude and 41 to 60 degress latitude. These were then used to calculate annual and growing season (defined as May 1st through August 31st) metrics for all 6-digit DMTI Spatial single link postal code locations in Canada, and for surrounding areas within 500 m and 1 km.
CANUE staff developed annual estimates of maximum mean warm-season land surface temperature (LST) recorded by LandSat 8 at 30m resolution. To reduce the effect of missing data/cloud cover/shadows, the highest mean warm-season value reported over three years was retained - for example, the data for 2021 represent the maximum of the mean land surface temperature at a pixel location between April 1st and September 30th in 2019, 2020 and 2021. Land surface temperature was calculated in Google Earth Engine, using a public algorithm (see supplementary documentation). In general, annual mean LST may not reflect ambient air temperatures experienced by individuals at any given time, but does identify areas that are hotter during the day and therefore more likely to radiate excess heat at night - both factors that contribute to heat islands within urban areas.
After 2022-01-25, Sentinel-2 scenes with PROCESSING_BASELINE '04.00' or above have their DN (value) range shifted by 1000. The HARMONIZED collection shifts data in newer scenes to be in the same range as in older scenes. Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission supporting Copernicus Land Monitoring studies, including the monitoring of vegetation, soil and water cover, as well as observation of inland waterways and coastal areas. The Sentinel-2 data contain 13 UINT16 spectral bands representing TOA reflectance scaled by 10000. See the Sentinel-2 User Handbook for details. QA60 is a bitmask band that contained rasterized cloud mask polygons until Feb 2022, when these polygons stopped being produced. Starting in February 2024, legacy-consistent QA60 bands are constructed from the MSK_CLASSI cloud classification bands. For more details, see the full explanation of how cloud masks are computed.. Each Sentinel-2 product (zip archive) may contain multiple granules. Each granule becomes a separate Earth Engine asset. EE asset ids for Sentinel-2 assets have the following format: COPERNICUS/S2/20151128T002653_20151128T102149_T56MNN. Here the first numeric part represents the sensing date and time, the second numeric part represents the product generation date and time, and the final 6-character string is a unique granule identifier indicating its UTM grid reference (see MGRS). The Level-2 data produced by ESA can be found in the collection COPERNICUS/S2_SR. For datasets to assist with cloud and/or cloud shadow detection, see COPERNICUS/S2_CLOUD_PROBABILITY and GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED. For more details on Sentinel-2 radiometric resolution, see this page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The following document outlines a generalized procedure to upload as well as maintain the Gravity Recovery and Climate Experiment (GRACE) as well as the Gravity Recovery and Climate Experiment - Follow On (GRACE-FO) data into the Google Earth Engine (GEE). Google Earth Engine is a geospatial visualization platform that allows scientists to directly interact with various satellite data such as MODIS, LANDSAT, and Sentinel data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rapid and accurate estimation of forest biomass are essential to drive sustainable management of forests. Field-based measurements of forest above-ground biomass (AGB) can be costly and difficult to conduct. Multi-source remote sensing data offers the potential to improve the accuracy of modelled AGB predictions. Here, four machine learning methods: Random Forest (RF), Gradient Boosting Decision Tree (GBDT), Classification and Regression Trees (CART), and Minimum Distance (MD) were used to construct forest AGB models of Taiyue Mountain forest, Shanxi Province, China using single and multi-sourced remote sensing data and the Google Earth Engine platform. Results showed that the machine learning method that most accurately predicted AGB were GBDT and spectral index for coniferous (R2 = 0.99; RMSE = 65.52 Mg/ha), broadleaved (R2 = 0.97; RMSE = 29.14 Mg/ha), and mixed-species (R2 = 0.97; RMSE = 81.12 Mg/ha) forest types. Models constructed using bivariate variable combinations that included the spectral index improved the AGB estimation accuracy of mixed-species (R2 = 0.99; RMSE = 59.52 Mg/ha) forest types and reduced slightly the accuracy of coniferous (R2 = 0.99; RMSE = 101.46 Mg/ha) and broadleaved (R2 = 0.97; RMSE = 37.59 Mg/ha) forest AGB estimation. Overall, parameterizing machine learning algorithms with multi-source remote sensing variables can improve the prediction accuracy of mixed-species forests.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The layers included in the code were from the study conducted by the research group of CNR-IBE (Institute of BioEconomy of the National Research Council of Italy) and ISPRA (Italian National Institute for Environmental Protection and Research), published by the Sustainability journal (https://doi.org/10.3390/su14148412).
Link to the Google Earth Engine (GEE) code (link: https://code.earthengine.google.com/715aa44e13b3640b5f6370165edd3002)
You can analyze and visualize the following spatial layers by accessing the GEE link:
Daytime summer land surface temperature (raster data, horizontal resolution 30 m, from Landsat-8 remote sensing data, years 2015-2019)
Surface thermal hot-spot (raster data, horizontal resolution 30 m) was obtained by using a statistical-spatial method based on the Getis-Ord Gi* approach through the ArcGIS Pro tool.
Surface albedo (raster data, horizontal resolution 10 m, Sentinel-2A remote sensing data, year 2017)
Impervious area (raster data, horizontal resolution 10 m, ISPRA data, year 2017)
Tree cover (raster data, horizontal resolution 10 m, ISPRA data, year 2018)
Grassland area (raster data, horizontal resolution 10 m, ISPRA data, year 2017)
Water bodies (raster data, horizontal resolution 2 m, Geoscopio Platform of Tuscany, year 2016)
Sky View Factor (raster data, horizontal resolution 1 m, lidar data from the OpenData platform of Florence, year 2016)
Buildings' units of Florence (shapefile from the OpenData platform of Florence) include data on the residential real estate value from the Real Estate Market Observatory (OMI) of the National Revenue Agency of Italy (source: https://www1.agenziaentrate.gov.it/servizi/Consultazione/ricerca.htm, accessed on 14 July 2022). Data on the characterization of the buffer area (50 m) surrounding the buildings are included in this shapefile [the names of table attributes are reported in the square brackets]: averaged values of the daytime summer land surface temperature [LST_media], thermal hot-spot pattern [Thermal_cl], mean values of sky view factor [SVF_medio], surface albedo [alb_medio], and average percentage areas of imperviousness [ImperArea%], tree cover [TreeArea%], grassland [GrassArea%] and water bodies [WaterArea%].
Here attached the .txt file of the GEE code.
Giulia Guerri, CNR-IBE, giulia.guerri@ibe.cnr.it
Marco Morabito, CNR-IBE, marco.morabito@cnr.it
Alfonso Crisci, CNR-IBE, alfonso.crisci@ibe.cnr.it
The original data set is from Tom Lutherborrow. On top of that, I used roboflow to auto-orient and Resize (Stretch to 416x416).
We wouldn't be here without the help of Tom Lutherborrow who provided data at Kaggle ( https://www.kaggle.com/tomluther/ships-in-google-earth ). If you owe any attributions or thanks, include them here along with any citations of past research.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This data provides the integrated cadastral framework for Canada Lands. The cadastral framework consists of active and superseded cadastral parcel, roads, easements, administrative areas, active lines, points and annotations. The cadastral lines form the boundaries of the parcels. COGO attributes are associated to the lines and depict the adjusted framework of the cadastral fabric. The cadastral annotations consist of lot numbers, block numbers, township numbers, etc. The cadastral framework is compiled from Canada Lands Survey Records (CLSR), registration plans (RS) and location sketches (LS) archived in the Canada Lands Survey Records.
Welcome to Apiscrapy, your ultimate destination for comprehensive location-based intelligence. As an AI-driven web scraping and automation platform, Apiscrapy excels in converting raw web data into polished, ready-to-use data APIs. With a unique capability to collect Google Address Data, Google Address API, Google Location API, Google Map, and Google Location Data with 100% accuracy, we redefine possibilities in location intelligence.
Key Features:
Unparalleled Data Variety: Apiscrapy offers a diverse range of address-related datasets, including Google Address Data and Google Location Data. Whether you seek B2B address data or detailed insights for various industries, we cover it all.
Integration with Google Address API: Seamlessly integrate our datasets with the powerful Google Address API. This collaboration ensures not just accessibility but a robust combination that amplifies the precision of your location-based insights.
Business Location Precision: Experience a new level of precision in business decision-making with our address data. Apiscrapy delivers accurate and up-to-date business locations, enhancing your strategic planning and expansion efforts.
Tailored B2B Marketing: Customize your B2B marketing strategies with precision using our detailed B2B address data. Target specific geographic areas, refine your approach, and maximize the impact of your marketing efforts.
Use Cases:
Location-Based Services: Companies use Google Address Data to provide location-based services such as navigation, local search, and location-aware advertisements.
Logistics and Transportation: Logistics companies utilize Google Address Data for route optimization, fleet management, and delivery tracking.
E-commerce: Online retailers integrate address autocomplete features powered by Google Address Data to simplify the checkout process and ensure accurate delivery addresses.
Real Estate: Real estate agents and property websites leverage Google Address Data to provide accurate property listings, neighborhood information, and proximity to amenities.
Urban Planning and Development: City planners and developers utilize Google Address Data to analyze population density, traffic patterns, and infrastructure needs for urban planning and development projects.
Market Analysis: Businesses use Google Address Data for market analysis, including identifying target demographics, analyzing competitor locations, and selecting optimal locations for new stores or offices.
Geographic Information Systems (GIS): GIS professionals use Google Address Data as a foundational layer for mapping and spatial analysis in fields such as environmental science, public health, and natural resource management.
Government Services: Government agencies utilize Google Address Data for census enumeration, voter registration, tax assessment, and planning public infrastructure projects.
Tourism and Hospitality: Travel agencies, hotels, and tourism websites incorporate Google Address Data to provide location-based recommendations, itinerary planning, and booking services for travelers.
Discover the difference with Apiscrapy – where accuracy meets diversity in address-related datasets, including Google Address Data, Google Address API, Google Location API, and more. Redefine your approach to location intelligence and make data-driven decisions with confidence. Revolutionize your business strategies today!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Surface water in arid regions is essential to many organisms including large mammals of conservation concern. For many regions little is known about the extent, ecology and hydrology of ephemeral waters, because they are challenging to map given their ephemeral nature and small sizes. Our goal was to advance surface water knowledge by mapping and monitoring ephemeral water from the wet to dry seasons across the Kavango-Zambezi (KAZA) transfrontier conservation area of southern Africa (300,000 km2). We mapped individual waterholes for six time points each year from mid-2017 to mid-2020, and described their presence, extent, duration, variability, and recurrence. We further analyzed a wide range of physical and landscape aspects of waterhole locations, including soils, geology, and topography, to climate and soil moisture. We identified 2.1 million previously unmapped ephemeral waterholes (85-89% accuracy) that seasonally extend across 23.5% of the study area. We confirmed a distinct ‘blue wave’ with ephemeral water across the region peaking at the end of the rainy season. We observed a wide range of waterhole types and sizes, with large variances in seasonal and interannual hydrology. We found that ephemeral surface water spatiotemporal patterns were was associated with soil type; loam soils were most likely to hold water for longer periods in the study area. From the wettest time period to the driest, there was a ~44,000 km2 (62%) decrease in ephemeral water extent across the region—these dramatic seasonal fluctuations have implications for wildlife movement. A warmer and drier climate, expected human population growth, and associated agricultural expansion and development may threaten these sensitive and highly variable water resources and the wildlife that depend on them.
This contains Google Earth Engine code to generate water coverage data for Schaffer-Smith et al 2022.
Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE