100+ datasets found
  1. h

    Agriculture-Plan-Diseases-QA-Pairs-Dataset

    • huggingface.co
    Updated Jun 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuvraj Singh (2024). Agriculture-Plan-Diseases-QA-Pairs-Dataset [Dataset]. https://huggingface.co/datasets/YuvrajSingh9886/Agriculture-Plan-Diseases-QA-Pairs-Dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 30, 2024
    Authors
    Yuvraj Singh
    Description

    YuvrajSingh9886/Agriculture-Plan-Diseases-QA-Pairs-Dataset dataset hosted on Hugging Face and contributed by the HF Datasets community

  2. Pills dataset

    • kaggle.com
    zip
    Updated Oct 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JAYAPRAKASHPONDY (2023). Pills dataset [Dataset]. https://www.kaggle.com/datasets/jayaprakashpondy/pills-dataset
    Explore at:
    zip(141223154 bytes)Available download formats
    Dataset updated
    Oct 17, 2023
    Authors
    JAYAPRAKASHPONDY
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by JAYAPRAKASHPONDY

    Released under CC0: Public Domain

    Contents

  3. h

    dataset

    • huggingface.co
    Updated Jul 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dmitrii Aspisov (2025). dataset [Dataset]. https://huggingface.co/datasets/aspisov/dataset
    Explore at:
    Dataset updated
    Jul 27, 2025
    Authors
    Dmitrii Aspisov
    Description

    aspisov/dataset dataset hosted on Hugging Face and contributed by the HF Datasets community

  4. R

    Dataset Ow Dataset

    • universe.roboflow.com
    zip
    Updated Jan 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Overwatch (2024). Dataset Ow Dataset [Dataset]. https://universe.roboflow.com/overwatch-4wpfl/dataset-ow
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 8, 2024
    Dataset authored and provided by
    Overwatch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Player Bounding Boxes
    Description

    Dataset Ow

    ## Overview
    
    Dataset Ow is a dataset for object detection tasks - it contains Player annotations for 10,000 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  5. CSIRO Sentinel-1 SAR image dataset of oil- and non-oil features for machine...

    • data.csiro.au
    Updated Dec 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Blondeau-Patissier; Thomas Schroeder; Foivos Diakogiannis; Zhibin Li (2022). CSIRO Sentinel-1 SAR image dataset of oil- and non-oil features for machine learning ( Deep Learning ) [Dataset]. http://doi.org/10.25919/4v55-dn16
    Explore at:
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    David Blondeau-Patissier; Thomas Schroeder; Foivos Diakogiannis; Zhibin Li
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2015 - Aug 31, 2022
    Area covered
    Dataset funded by
    ESA
    CSIROhttp://www.csiro.au/
    Description

    What this collection is: A curated, binary-classified image dataset of grayscale (1 band) 400 x 400-pixel size, or image chips, in a JPEG format extracted from processed Sentinel-1 Synthetic Aperture Radar (SAR) satellite scenes acquired over various regions of the world, and featuring clear open ocean chips, look-alikes (wind or biogenic features) and oil slick chips.

    This binary dataset contains chips labelled as: - "0" for chips not containing any oil features (look-alikes or clean seas)
    - "1" for those containing oil features.

    This binary dataset is imbalanced, and biased towards "0" labelled chips (i.e., no oil features), which correspond to 66% of the dataset. Chips containing oil features, labelled "1", correspond to 34% of the dataset.

    Why: This dataset can be used for training, validation and/or testing of machine learning, including deep learning, algorithms for the detection of oil features in SAR imagery. Directly applicable for algorithm development for the European Space Agency Sentinel-1 SAR mission (https://sentinel.esa.int/web/sentinel/missions/sentinel-1 ), it may be suitable for the development of detection algorithms for other SAR satellite sensors.

    Overview of this dataset: Total number of chips (both classes) is N=5,630 Class 0 1 Total 3,725 1,905

    Further information and description is found in the ReadMe file provided (ReadMe_Sentinel1_SAR_OilNoOil_20221215.txt)

  6. Game Dataset

    • kaggle.com
    zip
    Updated Apr 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mdnurhossen (2024). Game Dataset [Dataset]. https://www.kaggle.com/datasets/mdnurhossen/game-dataset
    Explore at:
    zip(409 bytes)Available download formats
    Dataset updated
    Apr 28, 2024
    Authors
    mdnurhossen
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by mdnurhossen

    Released under CC0: Public Domain

    Contents

  7. Orange dataset table

    • figshare.com
    xlsx
    Updated Mar 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rui Simões (2022). Orange dataset table [Dataset]. http://doi.org/10.6084/m9.figshare.19146410.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 4, 2022
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Rui Simões
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.

    Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.

  8. m

    Dataset for Crop Pest and Disease Detection

    • data.mendeley.com
    Updated Apr 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Mensah Kwabena (2023). Dataset for Crop Pest and Disease Detection [Dataset]. http://doi.org/10.17632/bwh3zbpkpv.1
    Explore at:
    Dataset updated
    Apr 26, 2023
    Authors
    Patrick Mensah Kwabena
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The application of Artificial Intelligence (AI) has been evident in the agricultural sector recently. The main goal of AI in agriculture is to improve crop yield, control crop pests/diseases, and reduce cost. The agricultural sector in developing countries faces severe in the form of disease and pest infestation, the knowledge gap between farmers and technology, and a lack of storage facilities, among others. To help address some of these challenges, this work presents crop pests/disease datasets sourced from local farms in Ghana. The dataset is presented in two folds; the raw images which consists of 24,881 images ( 6,549-Cashew, 7,508-Cassava, 5,389-Maize, and 5,435-Tomato) and augmented images which is further split into train and test set consists of 102,976 images (25,811-Cashew, 26,330-Cassava, 23,657-Maize, and 27,178-Tomato), categorized into 22 classes. All images are de-identified, validated by expert plant virologists, and freely available for use by the research community.

  9. R

    Old+new Dataset

    • universe.roboflow.com
    zip
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hslupren (2025). Old+new Dataset [Dataset]. https://universe.roboflow.com/hslupren/old-new/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    hslupren
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Graph Node Cone Obstacle ChE7 Bounding Boxes
    Description

    Old+new

    ## Overview
    
    Old+new is a dataset for object detection tasks - it contains Graph Node Cone Obstacle ChE7 annotations for 656 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  10. R

    Rock Analysis Dataset

    • universe.roboflow.com
    zip
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Atharva Desai (2023). Rock Analysis Dataset [Dataset]. https://universe.roboflow.com/atharva-desai-x1nvf/rock-analysis/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Atharva Desai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Rock Bounding Boxes
    Description

    Rock Analysis

    ## Overview
    
    Rock Analysis is a dataset for object detection tasks - it contains Rock annotations for 300 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  11. N

    Troy, IN Population Breakdown by Gender Dataset: Male and Female Population...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Troy, IN Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b2585f9c-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    IN, Troy
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Troy by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Troy across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a majority of female population, with 59.37% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Troy is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Troy total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Troy Population by Race & Ethnicity. You can refer the same here

  12. n

    Liver Computed Tomography Image Dataset - Dataset - Taiwan Medical AI and...

    • data.dmc.nycu.edu.tw
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Liver Computed Tomography Image Dataset - Dataset - Taiwan Medical AI and Data Portal [Dataset]. https://data.dmc.nycu.edu.tw/dataset/d12-ct
    Explore at:
    Dataset updated
    Sep 1, 2025
    Description

    Preoperative imaging annotations for cancer surgery were used to train AI for automatic image annotation, feature extraction, and analysis. This was further utilized to develop liver cancer prognosis prediction models. We provided preoperative CT images of liver cancer patients, including non-contrast phase (N), arterial phase (A), portal venous phase (P), and delayed phase (D) original images, along with corresponding tumor annotations (RTSS). Each phase consisted of approximately 40-50 images (depending on the actual phases executed during the examination, not all phases may be present).

  13. CIC-IDS-Collection

    • kaggle.com
    • huggingface.co
    zip
    Updated Nov 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    StrGenIx | Laurens D'hooge (2022). CIC-IDS-Collection [Dataset]. https://www.kaggle.com/datasets/dhoogla/cicidscollection
    Explore at:
    zip(864681190 bytes)Available download formats
    Dataset updated
    Nov 9, 2022
    Authors
    StrGenIx | Laurens D'hooge
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    The Canadian Institute for Cybersecurity has published several datasets for network intrusion detection. Four of them: CIC-IDS2017, CIC-DoS2017, CSE-CIC-IDS2018 and CIC-DDoS2019 are collated here into one collection, cleaned up and with harmonized labeling.

    The intent behind this collection is simple: to have a larger, more varied set of NIDS samples for more powerful analyses by researchers. Too often, researchers still rely on the individual datasets even though the full set is compatible out-of-the-box. The parts have been created for the same purpose and they have been processed with the same feature extraction tool chain.

    This collection also takes into account 2 articles in which flawed features were discovered. Those features have been removed from the dataset. See the cleanup notebook for more information.

    If you make use of this combined version, please credit the original authors. The relevant publications are cited here on Kaggle alongside the individual datasets and they are also readily available at the CIC's official dataset distribution page

  14. Manufacturing Dataset

    • kaggle.com
    zip
    Updated Aug 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shreshth Vashisht (2024). Manufacturing Dataset [Dataset]. https://www.kaggle.com/datasets/shreshthvashisht/manufacturing-dataset
    Explore at:
    zip(108377 bytes)Available download formats
    Dataset updated
    Aug 23, 2024
    Authors
    Shreshth Vashisht
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Shreshth Vashisht

    Released under Apache 2.0

    Contents

  15. Dataset Used

    • kaggle.com
    zip
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yasmeen Shah (2025). Dataset Used [Dataset]. https://www.kaggle.com/datasets/yasmeenshah/dataset-used
    Explore at:
    zip(11262 bytes)Available download formats
    Dataset updated
    Jun 19, 2025
    Authors
    Yasmeen Shah
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Yasmeen Shah

    Released under CC BY-SA 4.0

    Contents

  16. h

    90sclub-dataset

    • huggingface.co
    Updated Sep 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Derrick Schultz (2025). 90sclub-dataset [Dataset]. https://huggingface.co/datasets/dvs/90sclub-dataset
    Explore at:
    Dataset updated
    Sep 30, 2025
    Authors
    Derrick Schultz
    Description

    dvs/90sclub-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community

  17. B

    The Ciona17 dataset for semantic segmentation of invasive species in a...

    • borealisdata.ca
    • datasetcatalog.nlm.nih.gov
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angus Galloway; Graham Taylor; Aaron Ramsay; Medhat Moussa (2025). The Ciona17 dataset for semantic segmentation of invasive species in a marine aquaculture environment [Dataset]. http://doi.org/10.5683/SP/NTUOK9
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 7, 2025
    Dataset provided by
    Borealis
    Authors
    Angus Galloway; Graham Taylor; Aaron Ramsay; Medhat Moussa
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/3.3/customlicense?persistentId=doi:10.5683/SP/NTUOK9https://borealisdata.ca/api/datasets/:persistentId/versions/3.3/customlicense?persistentId=doi:10.5683/SP/NTUOK9

    Time period covered
    Nov 7, 2016 - Nov 8, 2016
    Area covered
    Prince Edward Island, Canada
    Description

    An original dataset for semantic segmentation, Ciona17, is introduced, which to the best of the authors' knowledge, is the first dataset of its kind with pixel-level annotations pertaining to invasive species in a marine environment. Diverse outdoor illumination, a range of object shapes, and severe occlusion provide a significant challenge for the computer vision community. An accompanying ground-truthing tool for superpixel labeling, Truth and Crop, is also introduced. In a subsequent work, results are reported in terms of the mean intersection over union (mIoU) with segmentation mask. The GUI application for ground-truthing semantic segmentation datasets in PyQt4/OpenCV can be accessed at https://github.com/AngusG/truth-and-crop

  18. Oracle Database metrics

    • kaggle.com
    zip
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timerkhanov Yuriy (2020). Oracle Database metrics [Dataset]. https://www.kaggle.com/datasets/timerkhanovyuriy/oracle-database-metrics
    Explore at:
    zip(2792848 bytes)Available download formats
    Dataset updated
    Aug 20, 2020
    Authors
    Timerkhanov Yuriy
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Timerkhanov Yuriy

    Released under CC0: Public Domain

    Contents

  19. N

    Newville, PA Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Newville, PA Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b247f4a0-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania, Newville
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Newville by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Newville across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a majority of male population, with 53.66% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Newville is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Newville total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Newville Population by Race & Ethnicity. You can refer the same here

  20. a

    Dataset Log

    • data-uvalibrary.opendata.arcgis.com
    • opendata.charlottesville.org
    • +1more
    Updated Oct 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Charlottesville (2017). Dataset Log [Dataset]. https://data-uvalibrary.opendata.arcgis.com/datasets/charlottesville::dataset-log
    Explore at:
    Dataset updated
    Oct 26, 2017
    Dataset authored and provided by
    City of Charlottesville
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Added new dataset OpenDataLog. The dataset stores detailed information regarding issues with the open data portal, new or changes to datasets on the portal as well as other information related to the City's Open Data Portal

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Yuvraj Singh (2024). Agriculture-Plan-Diseases-QA-Pairs-Dataset [Dataset]. https://huggingface.co/datasets/YuvrajSingh9886/Agriculture-Plan-Diseases-QA-Pairs-Dataset

Agriculture-Plan-Diseases-QA-Pairs-Dataset

YuvrajSingh9886/Agriculture-Plan-Diseases-QA-Pairs-Dataset

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jun 30, 2024
Authors
Yuvraj Singh
Description

YuvrajSingh9886/Agriculture-Plan-Diseases-QA-Pairs-Dataset dataset hosted on Hugging Face and contributed by the HF Datasets community

Search
Clear search
Close search
Google apps
Main menu