Facebook
Twitteraspisov/dataset dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterA subset of the LendingClub DataSet obtained from Kaggle: https://www.kaggle.com/wordsforthewise/lending-club
LendingClub is a US peer-to-peer lending company, headquartered in San Francisco, California. It was the first peer-to-peer lender to register its offerings as securities with the Securities and Exchange Commission (SEC), and to offer loan trading on a secondary market. LendingClub is the world's largest peer-to-peer lending platform.
Facebook
Twitterdvs/90sclub-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Devided XView Dataset is a dataset for object detection tasks - it contains Structure annotations for 10,000 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.
Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
What this collection is: A curated, binary-classified image dataset of grayscale (1 band) 400 x 400-pixel size, or image chips, in a JPEG format extracted from processed Sentinel-1 Synthetic Aperture Radar (SAR) satellite scenes acquired over various regions of the world, and featuring clear open ocean chips, look-alikes (wind or biogenic features) and oil slick chips.
This binary dataset contains chips labelled as:
- "0" for chips not containing any oil features (look-alikes or clean seas)
- "1" for those containing oil features.
This binary dataset is imbalanced, and biased towards "0" labelled chips (i.e., no oil features), which correspond to 66% of the dataset. Chips containing oil features, labelled "1", correspond to 34% of the dataset.
Why: This dataset can be used for training, validation and/or testing of machine learning, including deep learning, algorithms for the detection of oil features in SAR imagery. Directly applicable for algorithm development for the European Space Agency Sentinel-1 SAR mission (https://sentinel.esa.int/web/sentinel/missions/sentinel-1 ), it may be suitable for the development of detection algorithms for other SAR satellite sensors.
Overview of this dataset: Total number of chips (both classes) is N=5,630 Class 0 1 Total 3,725 1,905
Further information and description is found in the ReadMe file provided (ReadMe_Sentinel1_SAR_OilNoOil_20221215.txt)
Facebook
Twitterhttps://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts
InReDD-Dataset-PAN924 is a collection of 924 radiographic images annotated with mouth and teeth labels by specialists from the InReDD research group. InReDD (Interdisciplinary Research Group in Digital Dentistry) is a collaborative research initiative at the University of São Paulo’s Ribeirão Preto Campus (USP-RP), uniting the Department of Computation and Mathematics (DCM-USP-RP) and the School of Dentistry of Ribeirão Preto (FORP-USP-RP). The group is dedicated to developing applied technologies for the field of Odontology. In this context, the InReDD-Dataset-PAN924 is an image collection from the field of Odontology. It was developed to support descriptive analyses and to facilitate the creation and validation of artificial intelligence models. The data were collected primarily through clinical work at FORP-RP. This manuscript draws upon a previously published work, “Development of a dental digital dataset for research in artificial intelligence: the importance of labeling performed by radiologists.” However, certain details have been adjusted or updated to account for temporal adaptations and contextual revisions. As a result, portions of the content may not correspond verbatim to the original publication, although the scientific essence and core contributions remain preserved.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
Pen Dataset is a dataset for object detection tasks - it contains Pen annotations for 304 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Oakdale by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Oakdale across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 52.91% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Oakdale Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
This dataset, titled "Anabolic Steroids", provides a meticulously curated compilation of nearly 50 steroids. It includes detailed information on their original names, common names, medicinal applications, abuse potential, side effects, historical context, and relative molecular mass (RMM). The dataset aims to serve as a resource for exploring the dual nature of anabolic steroids—both their therapeutic benefits and their misuse in sports and bodybuilding.
Anabolic steroids are synthetic derivatives of testosterone that have been used for decades in medicine to treat conditions like anemia, muscle-wasting diseases, and hormone deficiencies. However, they are also widely abused for performance enhancement and aesthetic purposes. This dataset captures a comprehensive view of these compounds, making it valuable for researchers, educators, and data enthusiasts.
While this dataset is relatively small (approx 50 entries), it offers rich opportunities for exploratory analysis and domain-specific insights. Potential applications include:
Exploratory Data Analysis (EDA):
Domain-Specific Insights:
Educational Use:
This dataset has been ethically compiled from publicly available sources such as scientific journals, chemical databases, and educational websites. No proprietary or confidential information has been included. The data was aggregated to ensure accuracy and relevance while respecting intellectual property rights.
The following sources were instrumental in compiling this dataset: 1. PubChem Database – For verifying chemical properties and molecular mass values. 2. Wikipedia – For historical context and general information on anabolic steroids. 3. NIST Chemistry WebBook – For accurate molecular mass values and chemical details. 4. Scientific Journals – Referenced for medicinal uses, side effects documentation, and abuse patterns. 5. DALL·E 3 by OpenAI – Used to generate illustrative images related to anabolic steroids to complement dataset visualizations.
The misuse of anabolic steroids poses significant health risks and ethical concerns. While anabolic steroids have legitimate medical applications, their abuse for performance enhancement or aesthetic purposes can lead to severe physical and psychological side effects. Common adverse effects include liver damage, cardiovascular strain, hormonal imbalances, infertility, aggression, and mental health issues such as depression. Prolonged misuse can also result in irreversible damage to vital organs and an increased risk of life-threatening conditions like heart attacks or strokes. Beyond individual health risks, steroid abuse undermines the integrity of sports and creates unfair advantages in competitive environments. It is crucial to prioritize natural methods of achieving fitness goals and seek professional guidance for any medical conditions requiring treatment.
This dataset is not intended for machine learning due to its small size but serves as an excellent resource for exploratory data analysis (EDA), visualization projects, and domain-specific research into anabolic steroids' pharmacology and societal impact.
Facebook
TwitterThe dataset represents a compilation of user interaction data generated by users who participated in the project's pilot activities in Patras, Greece. Data was generated by users in the SMARTBUY app and includes information about users, stores, product categories, professions, and events.
The dataset comprises the following data: - users: user account data for the Patras pilot users - occupation: all possible occupations that the pilot users could choose from - stores: stores which participated in the Patras pilot - sel_products_cat: products uploaded to the SMARTBUY platform by retailers - events: geo-stamped and time-stamped descriptions of a user interaction event (for instance, "user_id 67 rated product_id 722 with rating 4 at location x1 at datetime y1", or "user_id 91 denoted product_id 78 as favorite at location x2 at datetime y2") - event_types: all possible event types captured by the SMARTBUY platform ('Product searches', 'Product views', 'Featured product', 'Products near you views', 'Product photos browsed', 'Product ratings', 'Clicks on Read More button to read product reviews', 'Clicks on Open map button', 'Clicks on Send this info by email button', 'Products denoted as Favorite')
Privacy-sensitive information such as user names, retailer owner names and store names and keywords searched are anonymized.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Dataset First is a dataset for object detection tasks - it contains Dataset First annotations for 280 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterThis dataset represents percent area consisting of carbonate-rock aquifers, igneous and metamorphic-rock, sandstone, sandstone and carbonate-rock, semiconsolidated sand, and unconsolidated sand and gravel aquifers within individual, local NHDPlusV2 catchments and upstream, contributing watersheds.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Indoor Segmentationv2 is a dataset for instance segmentation tasks - it contains Wall Floor annotations for 240 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
2398_For_R&D is a dataset for instance segmentation tasks - it contains Box Flyer annotations for 1,299 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Neural Climb V2 is a dataset for object detection tasks - it contains Hold annotations for 5,854 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
11 Original is a dataset for object detection tasks - it contains Person annotations for 225 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Asldataset2 is a dataset for object detection tasks - it contains Asll annotations for 1,728 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Saudi_uniform 2 is a dataset for instance segmentation tasks - it contains Thoob Shmag Person N3o7 annotations for 560 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
TwitterThe dataset is used to evaluate the performance of the 𝛼-RNN model on various time series tasks.
Facebook
Twitteraspisov/dataset dataset hosted on Hugging Face and contributed by the HF Datasets community