Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Effect of suicide rates on life expectancy dataset
Abstract In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy. The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.
Data
The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.
LICENSE
THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).
Data on death rates for suicide, by selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Vital Statistics System (NVSS); Grove RD, Hetzel AM. Vital statistics rates in the United States, 1940–1960. National Center for Health Statistics. 1968; numerator data from NVSS annual public-use Mortality Files; denominator data from U.S. Census Bureau national population estimates; and Murphy SL, Xu JQ, Kochanek KD, Arias E, Tejada-Vera B. Deaths: Final data for 2018. National Vital Statistics Reports; vol 69 no 13. Hyattsville, MD: National Center for Health Statistics. 2021. Available from: https://www.cdc.gov/nchs/products/nvsr.htm. For more information on the National Vital Statistics System, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.
Over *** thousand deaths due to suicides were recorded in India in 2022. Furthermore, majority of suicides were reported in the state of Tamil Nadu, followed by Rajasthan. The number of suicides that year had increased from the previous year. Some of the causes for suicides in the country were due to professional problems, abuse, violence, family problems, financial loss, sense of isolation and mental disorders. Depressive disorders and suicide As of 2015, over ****** million people worldwide suffered from some kind of depressive disorder. Furthermore, over ** percent of the total population in India suffer from different forms of mental disorders as of 2017. There exists a positive correlation between the number of suicide mortality rates and people with select mental disorders as opposed to those without. Risk factors for mental disorders Every ******* person in India suffers from some form of mental disorder. Today, depressive disorders are regarded as the leading contributor not only to disease burden and morbidity worldwide, but even suicide if not addressed. In 2022, the leading cause for suicide deaths in India was due to family problems. The second leading cause was due to illness. Some of the risk factors, relative to developing mental disorders including depressive and anxiety disorders, include bullying victimization, poverty, unemployment, childhood sexual abuse and intimate partner violence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing India suicide rate by year from 2000 to 2021.
The included dataset contains 10,000 synthetic Veteran patient records generated by Synthea. The scope of the data includes over 500 clinical concepts across 90 disease modules, as well as additional social determinants of health (SDoH) data elements that are not traditionally tracked in electronic health records. Each synthetic patient conceptually represents one Veteran in the existing US population; each Veteran has a name, sociodemographic profile, a series of documented clinical encounters and diagnoses, as well as associated cost and payer data. To learn more about Synthea, please visit the Synthea wiki at https://github.com/synthetichealth/synthea/wiki. To find a description of how this dataset is organized by data type, please visit the Synthea CSV File Data Dictionary at https://github.com/synthetichealth/synthea/wiki/CSV-File-Data-Dictionary.The included dataset contains 10,000 synthetic Veteran patient records generated by Synthea. The scope of the data includes over 500 clinical concepts across 90 disease modules, as well as additional social determinants of health (SDoH) data elements that are not traditionally tracked in electronic health records. Each synthetic patient conceptually represents one Veteran in the existing US population; each Veteran has a name, sociodemographic profile, a series of documented clinical encounters and diagnoses, as well as associated cost and payer data. To learn more about Synthea, please visit the Synthea wiki at https://github.com/synthetichealth/synthea/wiki. To find a description of how this dataset is organized by data type, please visit the Synthea CSV File Data Dictionary at https://github.com/synthetichealth/synthea/wiki/CSV-File-Data-Dictionary.
Close to 800 000 people die due to suicide every year, which is one person every 40 seconds. Suicide is a global phenomenon and occurs throughout the lifespan. Effective and evidence-based interventions can be implemented at population, sub-population and individual levels to prevent suicide and suicide attempts. There are indications that for each adult who died by suicide there may have been more than 20 others attempting suicide.
Suicide is a complex issue and therefore suicide prevention efforts require coordination and collaboration among multiple sectors of society, including the health sector and other sectors such as education, labour, agriculture, business, justice, law, defense, politics, and the media. These efforts must be comprehensive and integrated as no single approach alone can make an impact on an issue as complex as suicide.
This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data about obesity, suicides and unemployment segregated by Country. The sources of data are wikipedia tables as updated on 11/04/2022. More information can be found in project's github: https://github.com/martinsanc/wikipedia_scraper
Países (List of countries by population (United Nations) - Wikipedia)
Country
UN continental region
UN statistical subregion
Population 1 July 2018
Population 1 July 2019
Change
Desempleo (List of countries by unemployment rate - Wikipedia)
Unemployment Rate
Sourcedate of information
Suicidios (List of countries by suicide rate - Wikipedia)
All
Male
Female
Tasa de obesidad por país (List of countries by suicide rate - Wikipedia)
Rank
Obesity rate
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number of suicides and suicide rates, by sex and age, in England and Wales. Information on conclusion type is provided, along with the proportion of suicides by method and the median registration delay.
This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances. REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm. CDC. CDC Wonder: Underlying cause of death 1999–2016. Available from: http://wonder.cdc.gov/wonder/help/ucd.html.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths due to suicide in England and the rate per 100,000 people by days since diagnosis, comparing patients with selected health conditions with matched controls. Includes Hospital Episode Statistics (HES) diagnosis and deaths that occurred between 1 January 2017 and 31 March 2020.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Suicide is not only an individual phenomenon, but it is also influenced by social and environmental factors. With the high suicide rate and the abundance of social media data in South Korea, we have studied the potential of this new medium for predicting completed suicide at the population level. We tested two social media variables (suicide-related and dysphoria-related weblog entries) along with classical social, economic and meteorological variables as predictors of suicide over 3 years (2008 through 2010). Both social media variables were powerfully associated with suicide frequency. The suicide variable displayed high variability and was reactive to celebrity suicide events, while the dysphoria variable showed longer secular trends, with lower variability. We interpret these as reflections of social affect and social mood, respectively. In the final multivariate model, the two social media variables, especially the dysphoria variable, displaced two classical economic predictors – consumer price index and unemployment rate. The prediction model developed with the 2-year training data set (2008 through 2009) was validated in the data for 2010 and was robust in a sensitivity analysis controlling for celebrity suicide effects. These results indicate that social media data may be of value in national suicide forecasting and prevention.
Download data on suicides in Massachusetts by demographics and year. This page also includes reporting on military & veteran suicide, and suicides during COVID-19.
This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
In 2024, Japan reported 16.4 suicides per 100,000 inhabitants. The country's suicide rate resumed its downward trend after an unexpected surge in recent years, likely connected to the COVID-19 pandemic. What are the reasons behind Japan’s high suicide rates? While the majority of suicides in Japan stemmed from health reasons, existential concerns and problems directly related to work also accounted for thousands of self-inflicted deaths in the past years. One of the most profound issues faced by employees in Japan leading to self-harm is exhaustion. “Karoshi,” or death by overwork, is a well-known phenomenon in Japanese society. In addition to physical fatigue, karoshi may be precipitated by mental stress resulting from employment. Occupational stress or overwork-induced suicide is referred to as “karojisatsu (overwork suicide)” in Japan. Which demographic groups are affected? Although *************** are frequently depicted as the most at-risk demographic for suicide in Japan, the increasing occurrence of suicides among the elderly people and schoolchildren is causing concern. Bullying, isolation, and the lack of a proficient mental healthcare system can be additional factors contributing to the country’s high suicide rates among all age groups.
A. SUMMARY This dataset shows San Francisco COVID-19 deaths by population characteristics. This data may not be immediately available for recently reported deaths. Data updates as more information becomes available. Because of this, death totals may increase or decrease. Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how deaths have been distributed among different subgroups. This information can reveal trends and disparities among groups. B. HOW THE DATASET IS CREATED As of January 1, 2023, COVID-19 deaths are defined as persons who had COVID-19 listed as a cause of death or a significant condition contributing to their death on their death certificate. This definition is in alignment with the California Department of Public Health and the national Council of State and Territorial Epidemiologists. Death certificates are maintained by the California Department of Public Health. Data on the population characteristics of COVID-19 deaths are from: Case reports Medical records Electronic lab reports Death certificates Data are continually updated to maximize completeness of information and reporting on San Francisco COVID-19 deaths. To protect resident privacy, we summarize COVID-19 data by only one population characteristic at a time. Data are not shown until cumulative citywide deaths reach five or more. Data notes on select population characteristic types are listed below. Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. Gender * The City collects information on gender identity using these guidelines. C. UPDATE PROCESS Updates automatically at 06:30 and 07:30 AM Pacific Time on Wednesday each week. Dataset will not update on the business day following any federal holiday. D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a dataset based on the San Francisco Population and Demographic Census dataset.These population estimates are from the 2018-2022 5-year American Community Survey (ACS). This dataset includes several characteristic types. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cumulative deaths. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed. To explore data on the total number of deaths, use the COVID-19 Deaths Over Time dataset. E. CHANGE LOG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveThe majority of suicide decedents have had contact with health services in the months before their death. Contacts for mental health services present potential suicide prevention opportunities. This study aims to compare contact-based characteristics among suicide decedents and living controls in the year subsequent to clinical mental health contact with the public health system in Victoria, Australia.MethodsA population-based nested case-control study of those who had mental health-related hospital and community contacts with the public health system was conducted. Cases (suicide decedents) were age and gender-matched to living controls (suicide non-decedents). These records were linked to records of suicides that occurred in the 12 months following the health service contact, between January 1, 2011, and December 31, 2016. Victorian residents aged 10 years and above were selected at the time of contact (483,933 clients). In the study population, conditional logistic regression models were used to assess the relationship between contact-based characteristics and suicide. Socio-demographics and mental health-related hospital and community contact data was retrieved from the Victorian Admitted Episodes Dataset, the Victorian Emergency Minimum Dataset and the Public Clinical Mental Health database and suicide data from the Victorian Suicide Register.ResultsDuring a six-year period, 1,091 suicide decedents had at least one mental health contact with the public health system in the 12 months preceding the suicide. Overall, controls used more mental health services than cases; however, cases used more mental health services near the event. The relationship between the type of service and suicide differed by service type: hospital admissions and emergency department presentations had a significant positive association with suicide with an OR of 2.09 (95% CI 1.82–2.40) and OR of 1.13 (95% CI 1.05–1.22), and the effect size increased as the event approached, whereas community contacts had a significant negative association with an OR of 0.93 (95% CI 0.92–0.94), this negative association diminished in magnitude as the event approached (OR∼1).ConclusionSuicide decedents had less contact with mental health services than non-decedents; however, evidence suggests suicide decedents reach out to mental health services proximal to suicide. An increase in mental health service contact by an individual could be an indication of suicide risk and therefore an opportunity for intervention. Further, community level contact should be further explored as a possible prevention mechanism considering the majority of suicide decedents do not access the public clinical mental health services.
A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.
To access the dataset that continues to refresh daily, navigate to this page: COVID-19 Deaths by Population Characteristics Over Time. The dataset contains data on the following population characteristics that are no longer being reported publicly:
B. HOW THE DATASET IS CREATED COVID-19 deaths are suspected to be associated with COVID-19. This means COVID-19 is listed as a cause of death or significant condition on the death certificate. Data on the population characteristics of COVID-19 deaths are from: * Case interviews * Laboratories * Medical providers These multiple streams of data are merged, deduplicated, and undergo data verification processes. Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives. * This dataset includes data for COVID-19 deaths reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.
Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to Virtual Assistant information gathering starting December 2021. The California Department of Public Health, Virtual Assistant is only sent to adults who are 18+ years old. Learn more about our data collection guidelines pertaining to sexual orientation.
Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.
Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.
Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.
Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.
C. UPDATE PROCESS This dataset will only update when any population characteristics are archived. Data for existing characteristic types will not change but new characteristic types may be added. D. HOW TO USE THIS DATASET This dataset may include different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.
New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.
E. CHANGE LOG
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present 10 tables with different, related data. Table 1 is the result of an extensive narrative literature review depicting published national secular suicide trends extending by at least a century. Table 2 pinpoints all reforms in the statistical national system by year, period and political regimen since 1886. In Table 3, we relate different consecutive versions of international classification of diseases and causes of death, by year of international approval and periodic implementation in the national statistical system, also by period of political regimen, depicting periods when different data was made accessible (sex, age), when categories of causes of external death begun to be collected (total external, suicide, accidents, undetermined), and types of dates were apt to be estimated (eg., crude death rates, age-standardised death rates, age-specific death rates); Table 3 also shows a cumulative index of years and attributes bibliographic primary sources for each line of data since 1886. Table 4 presents economic cycles – recession, stagnation, expansion –, in Portugal, by year, political regimen, with indicated sources, since 1886. Tables 5 to 9 present yearly raw numbers, crude death rates of suicide, accidents, and undetermined deaths, by sex, since 1886 for suicide and 1971 for accidents and undetermined deaths; and age-standardised death rates for the population aged more than 15 years old, by sex, since 1913 for suicide, and 1971 both for accidents and undetermined deaths. Table 10 lists the reference sources for mortality primary data and nosology changes by yearly periods. Finally, Figures shows structural changes and breakpoints, from 1913-2018, by sex and group of cause of death, taking general mortality as a gold standard.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Effect of suicide rates on life expectancy dataset
Abstract In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy. The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.
Data
The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.
LICENSE
THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).