This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.
In 2023, the leading causes of death among children and adolescents in the United States aged 10 to 14 were unintentional injuries, intentional self-harm (suicide), and cancer. That year, unintentional injuries accounted for around 26 percent of all deaths among this age group. Leading causes of death among older teens Like those aged 10 to 14 years, the leading cause of death among older teenagers in the U.S. aged 15 to 19 years is unintentional injuries. In 2023, unintentional injuries accounted for around 39 percent of all deaths among older teens. However, unlike those aged 10 to 14, the second leading cause of death among teens aged 15 to 19 is assault or homicide. Sadly, the third leading cause of death among this age group is suicide, making suicide among the leading three causes of death for both age groups. Teen suicide Suicide remains a major problem among teenagers in the United States, as reflected in the leading causes of death among this age group. It was estimated that in 2021, around 22 percent of high school students in the U.S. considered attempting suicide in the past year, with this rate twice as high for girls as for boys. The states with the highest death rates due to suicide among adolescents aged 15 to 19 years are New Mexico, Idaho, and Oklahoma. In 2023, the death rate from suicide among this age group in New Mexico was 27.7 per 100,000 population. In comparison, New Jersey, the state with the lowest rate, had just 5.5 suicide deaths among those aged 15 to 19 years per 100,000 population.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
As of 2023, the third leading cause of death among teenagers aged 15 to 19 years in the United States was intentional self-harm or suicide, contributing to around 17 percent of deaths among this age group. The leading cause of death at that time was unintentional injuries, contributing to around 38.6 percent of deaths, while 20.7 percent of all deaths in this age group were due to assault or homicide. Cancer and heart disease, the overall leading causes of death in the United States, are also among the leading causes of death among U.S. teenagers. Adolescent suicide in the United States In 2021, around 22 percent of students in grades 9 to 12 reported that they had seriously considered attempting suicide in the past year. Female students were around twice as likely to report seriously considering suicide compared to male students. In 2023, New Mexico had the highest rate of suicides among U.S. teenagers, with around 28 deaths per 100,000 teenagers, followed by Idaho with a rate of 22.5 per 100,000. The states with the lowest death rates among adolescents are New Jersey and New York. Mental health treatment Suicidal thoughts are a clear symptom of mental health issues. Mental health issues are not rare among children and adolescents, and treatment for such issues has become increasingly accepted and accessible. In 2021, around 15 percent of boys and girls aged 5 to 17 years had received some form of mental health treatment in the past year. At that time, around 35 percent of youths aged 12 to 17 years in the United States who were receiving specialty mental health services were doing so because they had thought about killing themselves or had already tried to kill themselves.
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Every year the CDC releases the country’s most detailed report on death in the United States under the National Vital Statistics Systems. This mortality dataset is a record of every death in the country for 2005 through 2015, including detailed information about causes of death and the demographic background of the deceased.
It's been said that "statistics are human beings with the tears wiped off." This is especially true with this dataset. Each death record represents somebody's loved one, often connected with a lifetime of memories and sometimes tragically too short.
Putting the sensitive nature of the topic aside, analyzing mortality data is essential to understanding the complex circumstances of death across the country. The US Government uses this data to determine life expectancy and understand how death in the U.S. differs from the rest of the world. Whether you’re looking for macro trends or analyzing unique circumstances, we challenge you to use this dataset to find your own answers to one of life’s great mysteries.
This dataset is a collection of CSV files each containing one year's worth of data and paired JSON files containing the code mappings, plus an ICD 10 code set. The CSVs were reformatted from their original fixed-width file formats using information extracted from the CDC's PDF manuals using this script. Please note that this process may have introduced errors as the text extracted from the pdf is not a perfect match. If you have any questions or find errors in the preparation process, please leave a note in the forums. We hope to publish additional years of data using this method soon.
A more detailed overview of the data can be found here. You'll find that the fields are consistent within this time window, but some of data codes change every few years. For example, the 113_cause_recode entry 069 only covers ICD codes (I10,I12) in 2005, but by 2015 it covers (I10,I12,I15). When I post data from years prior to 2005, expect some of the fields themselves to change as well.
All data comes from the CDC’s National Vital Statistics Systems, with the exception of the Icd10Code, which are sourced from the World Health Organization.
This dataset describes injury mortality in the United States beginning in 1999. Two concepts are included in the circumstances of an injury death: intent of injury and mechanism of injury. Intent of injury describes whether the injury was inflicted purposefully (intentional injury) and, if purposeful, whether the injury was self-inflicted (suicide or self-harm) or inflicted by another person (homicide). Injuries that were not purposefully inflicted are considered unintentional (accidental) injuries. Mechanism of injury describes the source of the energy transfer that resulted in physical or physiological harm to the body. Examples of mechanisms of injury include falls, motor vehicle traffic crashes, burns, poisonings, and drownings (1,2). Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia. Age-adjusted death rates (per 100,000 standard population) are based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of injury death are classified by the International Classification of Diseases, Tenth Revision (ICD–10). Categories of injury intent and injury mechanism generally follow the categories in the external-cause-of-injury mortality matrix (1,2). Cause-of-death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. ICD–10: External cause of injury mortality matrix. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf. Miniño AM, Anderson RN, Fingerhut LA, Boudreault MA, Warner M. Deaths: Injuries, 2002. National vital statistics reports; vol 54 no 10. Hyattsville, MD: National Center for Health Statistics. 2006.
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks.
Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths.
Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services.
Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map.
Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10)
Heart disease (I00-I09, I11, I13, and I20–I51)
Cancer (C00–C97)
Unintentional injury (V01–X59 and Y85–Y86)
Chronic lower respiratory disease (J40–J47)
Stroke (I60–I69)
Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme.
Benchmarks are based on the three states with the lowest age and cause-specific mortality rates.
Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths.
Users can explore three benchmarks:
“2010 Fixed” is a fixed benchmark based on the best performing States in 2010.
“2005 Fixed” is a fixed benchmark based on the best performing States in 2005.
“Floating” is based on the best performing States in each year so change from year to year.
SOURCES
CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8.
Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
The leading causes of death among Black residents in the United States in 2023 included diseases of the heart, cancer, unintentional injuries, and stroke. The leading causes of death for African Americans generally reflect the leading causes of death for the entire United States population. However, a major exception is that death from assault or homicide is the seventh leading cause of death among African Americans but is not among the ten leading causes for the general population. Homicide among African Americans The homicide rate among African Americans has been higher than that of other races and ethnicities for many years. In 2023, around 9,284 Black people were murdered in the United States, compared to 7,289 white people. A majority of these homicides are committed with firearms, which are easily accessible in the United States. In 2023, around 13,350 Black people died by firearms. Cancer disparities There are also major disparities in access to health care and the impact of various diseases. For example, the incidence rate of cancer among African American males is the greatest among all ethnicities and races. Furthermore, although the incidence rate of cancer is lower among African American women than it is among white women, cancer death rates are still higher among African American women.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Age-adjusted mortality rates for the contiguous United States in 2000–2005 were obtained from the Wide-ranging Online Data for Epidemiologic Research system of the U.S. Centers for Disease Control and Prevention (CDC) (2015). Age-adjusted mortality rates were weighted averages of the age-specific death rates, and they were used to account for different age structures among populations (Curtin and Klein 1995). The mortality rates for counties with < 10 deaths were suppressed by the CDC to protect privacy and to ensure data reliability; only counties with ≥ 10 deaths were included in the analyses. The underlying cause of mortality was specified using the World Health Organization’s International Statistical Classification of Diseases and Related Health Problems (10th revision; ICD-10). In this study, we focused on the all-cause mortality rate (A00-R99) and on mortality rates from the three leading causes: heart disease (I00-I09, I11, I13, and I20-I51), cancer (C00-C97), and stroke (I60- I69) (Heron 2013). We excluded mortality due to external causes for all-cause mortality, as has been done in many previous studies (e.g., Pearce et al. 2010, 2011; Zanobetti and Schwartz 2009), because external causes of mortality are less likely to be related to environmental quality. We also focused on the contiguous United States because the numbers of counties with available cause-specific mortality rates were small in Hawaii and Alaska. County-level rates were available for 3,101 of the 3,109 counties in the contiguous United States (99.7%) for all-cause mortality; for 3,067 (98.6%) counties for heart disease mortality; for 3,057 (98.3%) counties for cancer mortality; and for 2,847 (91.6%) counties for stroke mortality. The EQI includes variables representing five environmental domains: air, water, land, built, and sociodemographic (2). The domain-specific indices include both beneficial and detrimental environmental factors. The air domain includes 87 variables representing criteria and hazardous air pollutants. The water domain includes 80 variables representing overall water quality, general water contamination, recreational water quality, drinking water quality, atmospheric deposition, drought, and chemical contamination. The land domain includes 26 variables representing agriculture, pesticides, contaminants, facilities, and radon. The built domain includes 14 variables representing roads, highway/road safety, public transit behavior, business environment, and subsidized housing environment. The sociodemographic environment includes 12 variables representing socioeconomics and crime. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jian, Y., L. Messer, J. Jagai, K. Rappazzo, C. Gray, S. Grabich, and D. Lobdell. Associations between environmental quality and mortality in the contiguous United States 2000-2005. ENVIRONMENTAL HEALTH PERSPECTIVES. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA, 125(3): 355-362, (2017).
The mortality rate from influenza in the United States is by far highest among those aged 65 years and older. During the 2023-2024 flu season, the mortality rate from influenza for this age group was around 32.1 per 100,000 population. The burden of influenza The impact of influenza in the U.S. varies from season to season, but in the 2023-2024 flu season, there were an estimated 40 million cases. These cases resulted in around 470,000 hospitalizations. Although most people recover from influenza without requiring medical treatment, the disease can be deadly for young children, the elderly, and those with weakened immune systems or chronic illnesses. During the 2023-2024 flu season, around 28,000 people in the U.S. lost their lives due to influenza. Impact of vaccinations The most effective way to prevent influenza is to receive an annual vaccination at the beginning of flu season. Flu vaccines are safe and can greatly reduce the burden of the disease. During the 2022-2023 flu season, vaccinations prevented around 2,479 deaths among those aged 65 years and older. Although flu vaccines are usually cheap and easily accessible, every year a large share of the population in the U.S. still does not get vaccinated. For example, during the 2022-2023 flu season, only about 35 percent of those aged 18 to 49 years received a flu vaccination.
Between the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Categories 1–6 are primary categories that were identified from CDC WONDER Underlying Causes of Death database. Category 7 is constructed based on the deaths of despair framework.
BackgroundAccording to one USA Renal Data System report, 57% of end-stage renal disease (ESRD) cases are attributed to hypertensive and diabetic nephropathy. Yet, trends in hypertension related ESRD mortality rates in adults ≥ 35 years of age have not been studied.ObjectivesThe aim of this retrospective study was to analyze the different trends hypertension related ESRD death rates among adults in the United States.MethodsDeath records from the CDC (Centers for Disease Control and Prevention Wide-Ranging OnLine Data for Epidemiologic Research) database were analyzed from 1999 to 2020 for hypertension related ESRD mortality in adults ≥ 35 years of age. Age-Adjusted mortality rates (AAMRs) per 100,000 persons and annual percent change (APC) were calculated and stratified by year, sex, race/ethnicity, place of death, and geographic location.ResultsHypertension-related ESRD caused a total of 721,511 deaths among adults (aged ≥ 35 years) between 1999 and 2020. The overall AAMR for hypertension related ESRD deaths in adults was 9.70 in 1999 and increased all the way up to 43.7 in 2020 (APC: 9.02; 95% CI: 8.19-11.04). Men had consistently higher AAMRs than woman during the analyzed years from 1999 (AAMR men: 10.8 vs women: 9) to 2020 (AAMR men: 52.2 vs women: 37.2). Overall AAMRs were highest in Non-Hispanic (NH) Black or African American patients (45.7), followed by NH American Indian or Alaska Natives (24.7), Hispanic or Latinos (23.4), NH Asian or Pacific Islanders (19.3), and NH White patients (15.4). Region-wise analysis also showed significant variations in AAMRs (overall AAMR: West 21.2; South: 21; Midwest: 18.3; Northeast: 14.2). Metropolitan areas had slightly higher AAMRs (19.1) than nonmetropolitan areas (19). States with AAMRs in 90th percentile: District of Columbia, Oklahoma, Mississippi, Tennessee, Texas, and South Carolina, had roughly double rates compared to states in 10th percentile.ConclusionsOverall hypertension related ESRD AAMRs among adults were seen to increase in almost all stratified data. The groups associated with the highest death rates were NH Black or African Americans, men, and populations in the West and metropolitan areas of the United States. Strategies and policies targeting these at-risk groups are required to control the rising hypertension related ESRD mortality.
The main causes of death in Nigeria in 2021 were neonatal disorders and malaria. More specifically, nearly 14 percent and 13 percent of all deaths in the country were caused by neonatal disorders and malaria, respectively. Other common causes included lower respiratory infects and COVID-19.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Alzheimer's disease (AD) has been categorized by the Centers for Disease Control and Prevention (CDC) as the 6th leading cause of death in the United States. AD is a significant health-care burden because of its increased occurrence (specifically in the elderly population), and the lack of effective treatments and preventive methods. With an increase in life expectancy, the CDC expects AD cases to rise to 15 million by 2060. Aging has been previously associated with susceptibility to AD, and there are ongoing efforts to effectively differentiate between normal and AD age-related brain degeneration and memory loss. AD targets neuronal function and can cause neuronal loss due to the buildup of amyloid-beta plaques and intracellular neurofibrillary tangles. Our study aims to identify temporal changes within gene expression profiles of healthy controls and AD subjects. We conducted a meta-analysis using publicly available microarray expression data from AD and healthy cohorts. For our meta-analysis, we selected datasets that reported donor age and gender, and used Affymetrix and Illumina microarray platforms (8 datasets, 2,088 samples). Raw microarray expression data were re-analyzed, and normalized across arrays. We then performed an analysis of variance, using a linear model that incorporated age, tissue type, sex, and disease state as effects, as well as study to account for batch effects, and included binary interactions between factors. Our results identified 3,735 statistically significant (Bonferroni adjusted p < 0.05) gene expression differences between AD and healthy controls, which we filtered for biological effect (10% two-tailed quantiles of mean differences between groups) to obtain 352 genes. Interesting pathways identified as enriched comprised of neurodegenerative diseases pathways (including AD), and also mitochondrial translation and dysfunction, synaptic vesicle cycle and GABAergic synapse, and gene ontology terms enrichment in neuronal system, transmission across chemical synapses and mitochondrial translation. Overall our approach allowed us to effectively combine multiple available microarray datasets and identify gene expression differences between AD and healthy individuals including full age and tissue type considerations. Our findings provide potential gene and pathway associations that can be targeted to improve AD diagnostics and potentially treatment or prevention.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the Global Heparin Market Size is USD XX Million in 2024 and is set to achieve a market size of USD XX Million by the end of 2033 growing at a CAGR of XX% from 2024 to 2033.
North America held largest share of XX% in the year 2024
Europe held share of XX% in the year 2024
Asia-Pacific held significant share of XX% in the year 2024
South America held significant share of XX% in the year 2024
Middle East and Africa held significant share of XX% in the year 2024
Market Dynamics of Heparin Market
Key Drivers for Heparin Market
Increasing Prevalence of Cardiovascular Diseases is inflating the heparin market.
Chronic blood diseases cases are increasing exponentially and are expected to propel the global antiplatelet drugs market. Chronic disease prevalence increase is due to drive the market. The increase in the incidence of cardiovascular diseases is one of the key drivers of the growth rate of the antiplatelet drugs market. Cardiovascular disease is the leading cause of mortality in both developed and developing economies.
It is estimated by the Centers for Disease Control and Prevention (CDC) that more than 8,00,000 people in the United States pass away every year due to stroke and other cardiovascular diseases. For instance, a World Health Organization (WHO) study has reported that cardiovascular diseases (CVDs) are responsible for approximately 31% of total patient deaths every year. For instance, in 2022, as noted in a National Library of Medicine study, cardiovascular diseases (CVD) were responsible for approximately 19.8 million deaths globally, necessitating the effective treatment of heparin in controlling thrombosis and mitigating mortality rates of CVD-related complications. The increasing rate of CVDs is a major factor behind the need for heparin: Venous thromboembolism (VTE), which includes deep vein thrombosis and pulmonary embolism, is a major cause of cardiovascular mortality worldwide. VTE risk doubles every decade after the age of 40, and is also very high among inpatients, with the incidence of 10 to 20 cases per 1,000 admissions. Atrial fibrillation, a prevalent cardiac arrhythmia, occurs in an estimated 12.1 million Americans by 2030, and this boosts the demand for anticoagulant drugs such as heparin. These highlights the imperative function of heparin in treating and preventing cardiovascular disease-related complications, thus fueling market expansion.
Rising number of geriatric populations increases CVD which in turn increases the usage of heparin and the market is expanding.
Growing geriatric population globally is expected to support heparin drugs demand since this group is susceptible to heart diseases. The population of individuals over 65 years is expected to double in the future years. The old-aged individuals are susceptible to many chronic diseases like cardiovascular diseases, which can encourage the demand for heparin drugs globally. There were approximately 382 million aged people, aged 60 years and older, in the world in 2017 and it is projected to grow to 2.1 billion by 2050, as per the United Nations. Older adults with cardiovascular disease (CVD) often face the challenge of managing multiple chronic or multimorbid conditions, leading to a significant drug burden that complicates their treatment. With the prevalence of multimorbidity ranging from 30% to 83% in individuals aged 65 and older, cardiovascular comorbidities are frequently reported as the most common combination of chronic diseases. This situation is further exacerbated by issues such as functional decline and complex geriatric syndromes (GSs), which are major concerns in the management of this population. Notably, polypharmacy, defined as the simultaneous use of five or more medications, affects 26.3% to 40% of older adults, with excessive polypharmacy impacting around 10%. The incidence of polypharmacy can reach alarming rates, with studies indicating a 53% to 87% incidence over three years. The presence of geriatric syndromes, which can affect 10% to 60% of older adults, significantly contributes to declines in functional status and quality of life, increased hospital admissions, and higher mortality rates. Additionally, frailty, characterized by a reduced physiological reserve and increased vulnerability to stressors, affects 10% of older adults, with rates as high as 60% in those with severe ...
The burden of influenza in the United States can vary from year to year depending on which viruses are circulating, how many people receive an influenza vaccination, and how effective the vaccination is in that particular year. During the 2023-2024 flu season, around 28,000 people lost their lives to the disease. Although most people recover from influenza without needing medical care, the disease can be deadly among young children, the elderly, and those with weakened immune systems or chronic illnesses. Deaths due to influenza Even though most people recover from influenza without medical care, influenza and pneumonia can be deadly, especially for older people and those with certain preexisting conditions. Influenza is a common cause of pneumonia and although most cases of influenza do not develop into pneumonia, those that do are often more severe and more deadly. Deaths due to influenza are most common among the elderly, with a mortality rate of around 32 per 100,000 population during the 2023-2024 flu season. In comparison, the mortality rate for those aged 50 to 64 years was 9.1 per 100,000 population. Flu vaccinations The most effective way to prevent influenza is to receive an annual influenza vaccination. These vaccines have proven to be safe and are usually cheap and easily accessible. Nevertheless, every year a large share of the population in the United States still fails to get vaccinated against influenza. For example, in the 2022-2023 flu season, only 35 percent of those aged 18 to 49 years received a flu vaccination. Unsurprisingly, children and the elderly are the most likely to get vaccinated. It is estimated that during the 2022-2023 flu season, vaccinations prevented over 929 thousand influenza cases among children aged 6 months to 4 years.
It was estimated that as of 2023, around **** million people in the United States had been diagnosed with diabetes. The number of people diagnosed with diabetes in the U.S. has increased in recent years and the disease is now a major health issue. Diabetes is now the seventh leading cause of death in the United States, accounting for ******percent of all deaths. What is prediabetes? A person is considered to have prediabetes if their blood sugar levels are higher than normal but not high enough to be diagnosed with type 2 diabetes. As of 2021, it was estimated that around ** million men and ** million women in the United States had prediabetes. However, according to the CDC, around ** percent of these people do not know they have this condition. Not only does prediabetes increase the risk of developing type 2 diabetes, but also increases the risk of heart disease and stroke. The states with the highest share of adults who had ever been told they have prediabetes are California, Hawaii, and New Mexico. The prevalence of diabetes in the United States As of 2023, around *** percent of adults in the United States had been diagnosed with diabetes, an increase from ****percent in the year 2000. Diabetes is much more common among older adults, with around ** percent of those aged 60 years and older diagnosed with diabetes, compared to just ****percent of those aged 20 to 39 years. The states with the highest prevalence of diabetes among adults are West Virginia, Mississippi, and Louisiana, while Utah and Colorado report the lowest rates. In West Virginia, around ** percent of adults have been diagnosed with diabetes.
This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.