16 datasets found
  1. z

    ZIP Code 10701 Profile

    • zip-codes.com
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ZIP-Codes.com (2025). ZIP Code 10701 Profile [Dataset]. https://www.zip-codes.com/zip-code/10701/zip-code-10701.asp
    Explore at:
    Dataset updated
    Oct 1, 2025
    Dataset provided by
    ZIP-Codes.com
    License

    https://www.zip-codes.com/tos-database.asphttps://www.zip-codes.com/tos-database.asp

    Area covered
    PostalCode:10701
    Description

    Demographics, population, housing, income, education, schools, and geography for ZIP Code 10701 (Yonkers, NY). Interactive charts load automatically as you scroll for improved performance.

  2. N

    Pike Road, AL Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Pike Road, AL Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f2fd9f2-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pike Road, Alabama
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Pike Road population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Pike Road across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Pike Road was 10,701, a 7.07% increase year-by-year from 2021. Previously, in 2021, Pike Road population was 9,994, an increase of 4.30% compared to a population of 9,582 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Pike Road increased by 7,161. In this period, the peak population was 10,701 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Pike Road is shown in this column.
    • Year on Year Change: This column displays the change in Pike Road population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Pike Road Population by Year. You can refer the same here

  3. N

    Phillips County, AR Non-Hispanic Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Phillips County, AR Non-Hispanic Population Breakdown by Race [Dataset]. https://www.neilsberg.com/research/datasets/6ba7c863-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arkansas, Phillips County
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of Phillips County by race. It includes the distribution of the Non-Hispanic population of Phillips County across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Phillips County across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in Phillips County, the largest racial group is Black or African American alone with a population of 10,701 (64.54% of the total Non-Hispanic population).

    https://i.neilsberg.com/ch/phillips-county-ar-population-by-race-and-ethnicity.jpeg" alt="Phillips County Non-Hispanic population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the Phillips County
    • Population: The population of the racial category (for Non-Hispanic) in the Phillips County is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Phillips County total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Phillips County Population by Race & Ethnicity. You can refer the same here

  4. d

    Taoyuan City Fire Water Source Statistics 10701.csv

    • data.gov.tw
    csv
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fire Department, Taoyuan (2024). Taoyuan City Fire Water Source Statistics 10701.csv [Dataset]. https://data.gov.tw/en/datasets/154567
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 29, 2024
    Dataset authored and provided by
    Fire Department, Taoyuan
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Area covered
    Taoyuan
    Description

    Provide statistics on above-ground and underground fire hydrants in Taoyuan City.

  5. N

    Sonoma, CA Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Sonoma, CA Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Sonoma from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/sonoma-ca-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California, Sonoma
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Sonoma population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Sonoma across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Sonoma was 10,619, a 0.77% decrease year-by-year from 2022. Previously, in 2022, Sonoma population was 10,701, a decline of 0.54% compared to a population of 10,759 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Sonoma increased by 1,340. In this period, the peak population was 11,193 in the year 2018. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Sonoma is shown in this column.
    • Year on Year Change: This column displays the change in Sonoma population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Sonoma Population by Year. You can refer the same here

  6. N

    Melissa, TX Age Cohorts Dataset: Children, Working Adults, and Seniors in...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Melissa, TX Age Cohorts Dataset: Children, Working Adults, and Seniors in Melissa - Population and Percentage Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/4b933cef-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Melissa, Texas
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Melissa population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Melissa. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 to 64 years with a poulation of 10,701 (61.16% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the Melissa population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in Melissa is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the Melissa is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Melissa Population by Age. You can refer the same here

  7. N

    River Grove, IL Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). River Grove, IL Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in River Grove from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/bf55b44e-4dd0-11ef-a154-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    River Grove, Illinois
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the River Grove population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of River Grove across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of River Grove was 10,282, a 0.84% decrease year-by-year from 2022. Previously, in 2022, River Grove population was 10,369, a decline of 1.74% compared to a population of 10,553 in 2021. Over the last 20 plus years, between 2000 and 2023, population of River Grove decreased by 419. In this period, the peak population was 10,701 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the River Grove is shown in this column.
    • Year on Year Change: This column displays the change in River Grove population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for River Grove Population by Year. You can refer the same here

  8. d

    Taoyuan City Firecrackers and Fireworks Illegal Crackdown 10701.csv

    • data.gov.tw
    csv
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fire Department, Taoyuan (2024). Taoyuan City Firecrackers and Fireworks Illegal Crackdown 10701.csv [Dataset]. https://data.gov.tw/en/datasets/153288
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 29, 2024
    Dataset authored and provided by
    Fire Department, Taoyuan
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Area covered
    Taoyuan
    Description

    Statistics on crackdown and penalties for violation of regulations related to the manufacture, storage, sale, or use of firecrackers and fireworks in Taoyuan City.

  9. i

    Demographic Maternal and Child Health Survey 1997 - Yemen, Rep.

    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Statistical Organization (CSO) (2019). Demographic Maternal and Child Health Survey 1997 - Yemen, Rep. [Dataset]. https://catalog.ihsn.org/catalog/227
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Central Statistical Organization (CSO)
    Time period covered
    1997
    Area covered
    Yemen
    Description

    Abstract

    The 1997 Yemen Demographic Maternal and Child Health Survey (YDMCHS) is part of the worldwide Demographic and Health Surveys (DHS) program. The DHS program is designed to collect data on fertility, family planning and maternal and child health.

    The YDMCHS-97 has the following objectives: 1. Provide policymakers and decisionmakers with a reliable database and analyses useful for policy choices and population programs, and provide researchers, other interested persons, and scholars with such data. 2. Update and expand the national population and health data base through collection of data which will allow the calculation of demographic rates, especially fertility rates, and infant and child mortality rates; 3. Analyse the direct and indirect factors which determine levels and trends of fertility. Indicators related to fertility will serve to elaborate plans for social and economic development; 4. Measure the level of contraceptive knowledge and practice by method, by rural and urban residence including some homogeneous governorates (Sana’a, Aden, Hadhramaut, Hodeidah, Hajjah and Lahj). 5. Collect quality data on family health: immunizations, prevalence and treatment of diarrhea and other diseases among children under five, prenatal visits, assistance at delivery and breastfeeding; 6. Measure the nutritional status of mothers and their children under five years (anthropometric measurements: weight and height); 7. Measure the level of maternal mortality at the national level. 8. Develop skills and resources necessary to conduct high-quality demographic and health surveys.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLE DESIGN

    The 1997 YDMCHS was based on a national sample in order to provide estimates for general indicators for the following domains: Yemen as a whole, urban and rural areas (each as a separate domain), three ecological zones identified as Coastal, Mountainous, and Plateau and Desert, as well as governorates with a sample size of at least 500 completed cases. The survey sample was designed as a two-stage cluster sample of 475 enumeration areas (EA), 135 in urban areas and 340 in rural areas. The master sample, based on the 1994 census frame, was used as the frame for the 1997 YDMCHS. The population covered by the Yemen survey was the universe of all ever-married women age 15-49. The initial target sample was 10,000 completed interviews among eligible women, and the final sample was 10,414. In order to get this number of completed interviews, and using the response rate found in the 1991-92 YDMCHS survey, a total of 10,701 of the 11,435 potential households selected for the household sample were completed.

    In each selected EA, a complete household listing operation took place between July and September 1997, and was undertaken by nineteen (19) field teams, taking into consideration the geographical closeness of the areas assigned to each team.

    Note: See detailed description of sample design in APPENDIX B of the final survey report.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Two Questionnaires were used to collect survey data:

    Household Questionnaire: The household questionnaire consists of two parts: a household schedule and a series of questions relating to the health and socioeconomic status of the household. The household schedule was used to list all usual household members. For each of the individuals included in the schedule, information was collected on the relationship to the household head, age, sex, marital status (for those 10 years and older), educational level (for those 6 years and older) and work status (for those 10 years and older). It also collects information on fertility, general mortality and child survival. The second part of the household questionnaire included questions on housing characteristics including the type of dwelling, location, materials used in construction, number of rooms, kitchen in use, main source of drinking water and health related aspects, lighting and toilet facilities, disposal of garbage, durable commodities, and assets, type of salt the household uses for cooking, and other related residential information.

    Individual Questionnaire: The individual questionnaire was administered to all ever-married women age 15-49 years who were usual residents. It contained 10 sections on the followings topics: - Respondent's background - Reproduction - Family planning - Pregnancy and breastfeeding - Immunization and health - Birth preferences - Marriage and husband's background - Maternal mortality - Female circumcision - Height and weight

    Response rate

    10,701 households, distributed between urban (3,008 households) and rural areas (7,693), households which were successfully interviewed in the 1997 YDMCHS. This represents a country-wide response rate of 98.2 percent (98.7 and 98.0 percent, respectively, for urban and rural areas).

    A total of 11,158 women were identified as eligible to be interviewed. Questionnaires were completed for 10,414 women, which represents a response rate of 93.3 percent. The response rate in urban areas was 93 percent; and in rural areas it was 93.5 percent.

    Note: See summarized response rates by place of residence in Table 1.1 of the final survey report.

    Sampling error estimates

    The estimates from a sample surveys are affected by two types of errors: (1) non-sampling error, and (2) sampling error. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the YDMCHS-97 to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the YDMCHS-97 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would have yielded results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistics in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the YDMCHS-97 sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the YDMCHS-97 is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearization method of variance estimate for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimate of more complex statistics such as fertility and mortality rates.

    Note: See detailed estimate of sampling error calculation in APPENDIX C of the final survey report.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women and men - Completeness of reporting - Births by calendar year - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX D of the final survey report.

  10. N

    Income Distribution by Quintile: Mean Household Income in Orbisonia, PA

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Orbisonia, PA [Dataset]. https://www.neilsberg.com/research/datasets/94da60db-7479-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania, Orbisonia
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Orbisonia, PA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 10,701, while the mean income for the highest quintile (20% of households with the highest income) is 131,997. This indicates that the top earners earn 12 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 190,277, which is 144.15% higher compared to the highest quintile, and 1778.12% higher compared to the lowest quintile.

    https://i.neilsberg.com/ch/orbisonia-pa-mean-household-income-by-quintiles.jpeg" alt="Mean household income by quintiles in Orbisonia, PA (in 2022 inflation-adjusted dollars))">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Orbisonia median household income. You can refer the same here

  11. n

    Batwar (108) Census 2011

    • gramvikas.nskmultiservices.in
    Updated Mar 1, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). Batwar (108) Census 2011 [Dataset]. https://gramvikas.nskmultiservices.in/india/himachal-pradesh/kangra/dadasiba/batwar-108
    Explore at:
    Dataset updated
    Mar 1, 2011
    License

    https://data.gov.in/sites/default/files/Gazette_Notification_OGDL.pdfhttps://data.gov.in/sites/default/files/Gazette_Notification_OGDL.pdf

    Time period covered
    2011
    Description

    Comprehensive population and demographic data for Batwar (108) Village

  12. p

    School 16

    • publicschoolreview.com
    json, xml
    Updated Feb 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2025). School 16 [Dataset]. https://www.publicschoolreview.com/school-16-profile/10701
    Explore at:
    xml, jsonAvailable download formats
    Dataset updated
    Feb 9, 2025
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1987 - Dec 31, 2025
    Description

    Historical Dataset of School 16 is provided by PublicSchoolReview and contain statistics on metrics:Total Students Trends Over Years (1987-2023),Total Classroom Teachers Trends Over Years (1990-2023),Distribution of Students By Grade Trends,Student-Teacher Ratio Comparison Over Years (1990-2023),Asian Student Percentage Comparison Over Years (1993-2023),Hispanic Student Percentage Comparison Over Years (1993-2023),Black Student Percentage Comparison Over Years (1993-2023),White Student Percentage Comparison Over Years (1993-2023),Two or More Races Student Percentage Comparison Over Years (2014-2023),Diversity Score Comparison Over Years (1993-2023),Free Lunch Eligibility Comparison Over Years (1995-2023),Reduced-Price Lunch Eligibility Comparison Over Years (2000-2023),Reading and Language Arts Proficiency Comparison Over Years (2011-2022),Math Proficiency Comparison Over Years (2012-2023),Science Proficiency Comparison Over Years (2021-2022),Overall School Rank Trends Over Years (2012-2023)

  13. N

    Elbert County, CO annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Elbert County, CO annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/elbert-county-co-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Elbert County, Colorado
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Elbert County. The dataset can be utilized to gain insights into gender-based income distribution within the Elbert County population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Elbert County, among individuals aged 15 years and older with income, there were 10,701 men and 9,531 women in the workforce. Among them, 6,093 men were engaged in full-time, year-round employment, while 4,102 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 4.84% fell within the income range of under $24,999, while 4.95% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 52.88% of men in full-time roles earned incomes exceeding $100,000, while 30.47% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Elbert County median household income by race. You can refer the same here

  14. B

    2006 Census of Canada, Shelter Costs at the Dissemination Area (DA) Level in...

    • borealisdata.ca
    Updated Nov 21, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2016). 2006 Census of Canada, Shelter Costs at the Dissemination Area (DA) Level in the City of Toronto Census Subdivision (CSD) [custom tabulation] [Dataset]. http://doi.org/10.5683/SP3/6YYWYY
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 21, 2016
    Dataset provided by
    Borealis
    Authors
    Statistics Canada
    License

    https://borealisdata.ca/api/datasets/:persistentId/versions/2.2/customlicense?persistentId=doi:10.5683/SP3/6YYWYYhttps://borealisdata.ca/api/datasets/:persistentId/versions/2.2/customlicense?persistentId=doi:10.5683/SP3/6YYWYY

    Area covered
    Canada, Toronto
    Description

    This dataset is a custom tabulation of the 2006 Census of Canada containing shelter cost statistics (rent, electricity, fuel, water and other municipal services, mortgage payments, property taxes and condominium fees) for private households in non-band non-farm non-reserve occupied private dwellings in the City of Toronto.

  15. N

    Kaysville, UT annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Kaysville, UT annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/kaysville-ut-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Utah, Kaysville
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Kaysville. The dataset can be utilized to gain insights into gender-based income distribution within the Kaysville population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Kaysville, among individuals aged 15 years and older with income, there were 10,701 men and 9,005 women in the workforce. Among them, 6,988 men were engaged in full-time, year-round employment, while 2,628 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 1.70% fell within the income range of under $24,999, while 5.21% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 49.59% of men in full-time roles earned incomes exceeding $100,000, while 26.90% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Kaysville median household income by race. You can refer the same here

  16. N

    Paramount, CA annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Paramount, CA annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/paramount-ca-income-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Paramount, California
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Paramount. The dataset can be utilized to gain insights into gender-based income distribution within the Paramount population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Paramount, among individuals aged 15 years and older with income, there were 17,487 men and 14,914 women in the workforce. Among them, 10,701 men were engaged in full-time, year-round employment, while 6,746 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 8.54% fell within the income range of under $24,999, while 18.46% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 8.45% of men in full-time roles earned incomes exceeding $100,000, while 6.24% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Paramount median household income by race. You can refer the same here

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ZIP-Codes.com (2025). ZIP Code 10701 Profile [Dataset]. https://www.zip-codes.com/zip-code/10701/zip-code-10701.asp

ZIP Code 10701 Profile

Explore at:
Dataset updated
Oct 1, 2025
Dataset provided by
ZIP-Codes.com
License

https://www.zip-codes.com/tos-database.asphttps://www.zip-codes.com/tos-database.asp

Area covered
PostalCode:10701
Description

Demographics, population, housing, income, education, schools, and geography for ZIP Code 10701 (Yonkers, NY). Interactive charts load automatically as you scroll for improved performance.

Search
Clear search
Close search
Google apps
Main menu