Population density in 1990 within the boundaries of the Narragansett Bay watershed, the Southwest Coastal Ponds watershed, and the Little Narragansett Bay watershed. The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 1990 10m cell population density raster was produced using Rhode Island 1988 state land use data, Massachusetts 1985 state land use, Connecticut 1992 NLCD land use data, and U.S. Census data (1990). To generate a population estimate (number of persons) for any given area within the boundaries of this raster, use the Zonal Statistics as Table tool to sum the 10m cell density values within your zone dataset (e.g., watershed polygon layer). For more information, please reference the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org).
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The European Copernicus Coastal Flood Awareness System (ECFAS) project aimed at contributing to the evolution of the Copernicus Emergency Management Service (https://emergency.copernicus.eu/) by demonstrating the technical and operational feasibility of a European Coastal Flood Awareness System. Specifically, ECFAS provides a much-needed solution to bolster coastal resilience to climate risk and reduce population and infrastructure exposure by monitoring and supporting disaster preparedness, two factors that are fundamental to damage prevention and recovery if a storm hits.
The ECFAS Proof-of-Concept development ran from January 2021 to December 2022. The ECFAS project was a collaboration between Scuola Universitaria Superiore IUSS di Pavia (Italy, ECFAS Coordinator), Mercator Ocean International (France), Planetek Hellas (Greece), Collecte Localisation Satellites (France), Consorzio Futuro in Ricerca (Italy), Universitat Politecnica de Valencia (Spain), University of the Aegean (Greece), and EurOcean (Portugal), and was funded by the European Commission H2020 Framework Programme within the call LC-SPACE-18-EO-2020 - Copernicus evolution: research activities in support of the evolution of the Copernicus services.
Description of the containing files inside the Dataset.
The ECFAS Coastal Dataset represents a single access point to publicly available Pan-European datasets that provide key information for studying coastal areas. The publicly available datasets listed below have been clipped to the coastal area extent, quality-checked and assessed for completeness and usability in terms of coverage, accuracy, specifications and access. The dataset was divided at European country level, except for the Adriatic area which was extracted as a region and not at the country level due to the small size of the countries. The buffer zone of each data was 10km inland in order to be correlated with the new Copernicus product Coastal Zone LU/LC.
Specifically, the dataset includes the new Coastal LU/LC product which was implemented by the EEA and became available at the end of 2020. Additional information collected in relation to the location and characteristics of transport (road and railway) and utility networks (power plants), population density and time variability. Furthermore, some of the publicly available datasets that were used in CEMS related to the above mentioned assets were gathered such as OpenStreetMap (building footprints, road and railway network infrastructures), GeoNames (populated places but also names of administrative units, rivers and lakes, forests, hills and mountains, parks and recreational areas, etc.), the Global Human Settlement Layer (GHS) and Global Human Settlement Population Grid (GHS-POP) generated by JRC. Also, the dataset contains 2 layers with statistics information regarding the population of Europe per sex and age divided in administrative units at NUTS level 3. The first layer includes information for the whole of Europe and the second layer has only the information regarding the population at the Coastal area. Finally, the dataset includes the global database of Floods protection standards. Below there are tables which present the dataset.
* Adriatic folder contains the countries: Slovenia, Croatia, Montenegro, Albania, Bosnia and Herzegovina
* Malta was added to the dataset
Copernicus Land Monitoring Service:
Coastal LU/LC
Scale 1:10.000; A Copernicus hotspot product to monitor landscape dynamics in coastal zones
EU-Hydro - Coastline
Scale 1:30.000; EU-Hydro is a dataset for all European countries providing the coastline
Natura 2000
Scale 1: 100000; A Copernicus hotspot product to monitor important areas for nature conservation
European Settlement Map
Resolution 10m; A spatial raster dataset that is mapping human settlements in Europe
Imperviousness Density
Resolution 10m; The percentage of sealed area
Impervious Built-up
Resolution 10m; The part of the sealed surfaces where buildings can be found
Grassland 2018
Resolution 10m; A binary grassland/non-grassland product
Tree Cover Density 2018
Resolution 10m; Level of tree cover density in a range from 0-100%
Joint Research Center:
Global Human Settlement Population Grid
GHS-POP)
Resolution 250m; Residential population estimates for target year 2015
GHS settlement model layer
(GHS-SMOD)
Resolution 1km: The GHS Settlement Model grid delineates and classify settlement typologies via a logic of population size, population and built-up area densities
GHS-BUILT
Resolution 10m; Built-up grid derived from Sentinel-2 global image composite for reference year 2018
ENACT 2011 Population Grid
(ENACT-POP R2020A)
Resolution 1km; The ENACT is a population density for the European Union that take into account major daily and monthly population variations
JRC Open Power Plants Database (JRC-PPDB-OPEN)
Europe's open power plant database
GHS functional urban areas
(GHS-FUA R2019A)
Resolution 1km; City and its commuting zone (area of influence of the city in terms of labour market flows)
GHS Urban Centre Database
(GHS-UCDB R2019A)
Resolution 1km; Urban Centres defined by specific cut-off values on resident population and built-up surface
Additional Data:
Open Street Map (OSM)
BF, Transportation Network, Utilities Network, Places of Interest
CEMS
Data from Rapid Mapping activations in Europe
GeoNames
Populated places, Adm. units, Hydrography, Forests, Hills/Mountains, Parks, etc.
Global Administrative Areas
Administrative areas of all countries, at all levels of sub-division
NUTS3 Population Age/Sex Group
Eurostat population by age and sex statistics interescted with the NUTS3 Units
FLOPROS
A global database of FLOod PROtection Standards, which comprises information in the form of the flood return period associated with protection measures, at different spatial scales
Disclaimer:
ECFAS partners provide the data "as is" and "as available" without warranty of any kind. The ECFAS partners shall not be held liable resulting from the use of the information and data provided.
This project has received funding from the Horizon 2020 research and innovation programme under grant agreement No. 101004211
Population density in 1990 within the boundaries of the Narragansett Bay watershed, the Southwest Coastal Ponds watershed, and the Little Narragansett Bay watershed. The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 1990 population density (persons per acre) raster was produced using Rhode Island (1988) state land use data, Massachusetts (1985) state land use, Connecticut (1992) NLCD land use data, and U.S. Census data (1990). This raster is appropriate for mapping purposes, as raster values have been converted to persons per acre. To generate population estimates (number of persons), use the 10m cell population rasters. For more information, please reference the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org).
The European Copernicus Coastal Flood Awareness System (ECFAS) project will contribute to the evolution of the Copernicus Emergency Monitoring Service by demonstrating the technical and operational feasibility of a European Coastal Flood Awareness System. Specifically, ECFAS will provide a much-needed solution to bolster coastal resilience to climate risk and reduce population and infrastructure exposure by monitoring and supporting disaster preparedness, two factors that are fundamental to damage prevention and recovery if a storm hits.
The ECFAS Proof-of-Concept development will run from January 2021-December 2022. The ECFAS project is a collaboration between Istituto Universitario di Studi Superiori IUSS di Pavia (Italy, ECFAS Coordinator), Mercator Ocean International (France), Planetek Hellas (Greece), Collecte Localisation Satellites (France), Consorzio Futuro in Ricerca (Italy), Universitat Politecnica de Valencia (Spain), University of the Aegean (Greece), and EurOcean (Portugal), and is funded by the European Commission H2020 Framework Programme within the call LC-SPACE-18-EO-2020 - Copernicus evolution: research activities in support of the evolution of the Copernicus services.
This project has received funding from the European Union’s Horizon 2020 programme
Description of the containing files inside the Dataset.
The dataset was divided at European country level, except the Adriatic area which was extracted as a region and not on a country level due to the small size of the countries. The buffer zone of each data was 10km inland in order to be correlated with the new Copernicus product Coastal Zone LU/LC.
Specifically, the dataset includes the new Coastal LU/LC product which was implemented by the EEA and became available at the end of 2020. Additional information collected in relation to the location and characteristics of transport (road and railway) and utility networks (power plants), population density and time variability. Furthermore, some of the publicly available datasets that were used in CEMS related to the abovementioned assets were gathered such as OpenStreetMap (building footprints, road and railway network infrastructures), GeoNames (populated places but also names of administrative units, rivers and lakes, forests, hills and mountains, parks and recreational areas, etc.), the Global Human Settlement Layer (GHS) and Global Human Settlement Population Grid (GHS-POP) generated by JRC. Also, the dataset contains 2 layers with statistics information regarding the population of Europe per sex and age divided in administrative units at NUTS level 3. The first layers includes information fro the whole Europe and the second layer has only the information regaridng the population at the Coastal area. Finally, the dataset includes the global database of Floods protection standars. Below there are tables which present the dataset.
Copernicus Land Monitoring Service |
Resolution |
Comment |
Coastal LU/LC |
1:10.000 |
A Copernicus hotspot product to monitor landscape dynamics in coastal zones |
EU-Hydro - Coastline |
1:30.000 |
EU-Hydro is a dataset for all European countries providing the coastline |
Natura 2000 | 1: 100000 | A Copernicus hotspot product to monitor important areas for nature conservation |
European Settlement Map |
10m |
A spatial raster dataset that is mapping human settlements in Europe |
Imperviousness Density |
10m |
The percentage of sealed area |
Impervious Built-up |
10m |
The part of the sealed surfaces where buildings can be found |
Grassland 2018 |
10m |
A binary grassland/non-grassland product |
Tree Cover Density 2018 |
10m |
Level of tree cover density in a range from 0-100% |
Joint Research Center |
Resolution |
Comment |
Global Human Settlement Population Grid |
250m |
Residential population estimates for target year 2015 |
GHS settlement model layer |
1km |
The GHS Settlement Model grid delineates and classify settlement typologies via a logic of population size, population and built-up area densities |
GHS-BUILT |
10m |
Built-up grid derived from Sentinel-2 global image composite for reference year 2018 |
ENACT 2011 Population Grid (ENACT-POP R2020A) |
1km |
The ENACT is a population density for the European Union that take into account major daily and monthly population variations |
JRC Open Power Plants Database (JRC-PPDB-OPEN) |
- |
Europe’s open power plant database |
GHS functional urban areas |
1km |
City and its commuting zone (area of influence of the city in terms of labour market flows) |
GHS Urban Centre Database |
1km |
Urban Centres defined by specific cut-off values on resident population and built-up surface |
Additional Data |
Resolution |
Comment |
Open Street Map (OSM) |
- |
BF, Transportation Network, Utilities Network, Places of Interest |
CEMS |
- |
Data from Rapid Mapping activations in Europe |
GeoNames |
- |
Populated places, Adm. units, Hydrography, Forests, Hills/Mountains, Parks, etc. |
Global Administrative Areas | - | Administrative areas of all countries, at all levels of sub-division |
NUTS3 Population Age/Sex Group | - | Eurostat population by age ansd sex statistics interesected with the NUTS3 Units |
FLOPROS | A global database of FLOod PROtection Standards, which comprises information in the form of the flood return period associated with protection measures, at different spatial scales |
Disclaimer:
ECFAS partners provide the data "as is" and "as available" without warranty of any kind. The ECFAS partners shall not be held liable resulting from the use of the information and data provided.
This project has received funding from the Horizon 2020 research and innovation programme under grant agreement No. 101004211 |
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
This dataset contains 4 different scale GEODATA TOPO series, Geoscience Australia topographic datasets. 1M, 2.5M, 5M and 10M with age ranges from 2001 to 2004.
1:1 Million - Global Map Australia 1M 2001 is a digital dataset covering the Australian landmass and island territories, at a 1:1 million scale. Product Specifications -Themes: It consists of eight layers of information: Vector layers - administrative boundaries, drainage, transportation and population centres Raster layers - elevation, vegetation, land use and land cover -Coverage: Australia -Currency: Variable, based on GEODATA TOPO 250K Series 1 -Coordinates: Geographical -Datum: GDA94, AHD -Medium: Free online -Format: -Vector: ArcInfo Export, ESRI Shapefile, MapInfo mid/mif and Vector Product Format (VPF) -Raster: Band Interleaved by Line (BIL)
1:2.5 Million - GEODATA TOPO 2.5M 2003 is a national seamless data product aimed at regional or national applications. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 2.5 million general reference map and is suitable for GIS applications. The product consists of the following layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges; Spot heights; and waterbodies. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 1:2.5 million scale general reference maps. This data supersedes the TOPO 2.5M 1998 product through the following characteristics: developed according to GEODATA specifications derived from GEODATA TOPO 250K Series 2 data where available. Product Specifications Themes: GEODATA TOPO 2.5M 2003 consists of eleven layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges; spot heights; and waterbodies Coverage: Australia Currency: 2003 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online - Available in ArcInfo Export, ArcView Shapefile and MapInfo mid/mif
1:5 Million - GEODATA TOPO 5M 2004 is a national seamless data product aimed at regional or national applications. It is a vector representation of the Australian landscape as represented on the Geoscience Australia 5 million general reference map and is suitable for GIS applications. Offshore and sand ridge layers were sourced from scanning of the original 1:5 million map production material. The remaining nine layers were derived from the GEODATA TOPO 2.5M 2003 dataset. Free online. Available in ArcInfo Export, ArcView Shapefile and MapInfo mid/mif. Product Specifications: Themes: consists of eleven layers: built-up areas; contours; drainage; framework; localities; offshore; rail transport; road transport; sand ridges, spot heights and waterbodies Coverage: Australia Currency: 2004 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif Medium: Free online
1:10 Million - The GEODATA TOPO 10M 2002 version of this product has been completely revised, including the source information. The data is derived primarily from GEODATA TOPO 250K Series 1 data. In October 2003, the data was released in double precision coordinates. It provides a fundamental base layer of geographic information on which you can build a wide range of applications and is particularly suited to State-wide and national applications. The data consists of ten layers: built-up areas, contours, drainage, Spot heights, framework, localities, offshore, rail transport, road transport, and waterbodies. Coverage: Australia Currency: 2002 Coordinates: Geographical Datum: GDA94, AHD Format: ArcInfo Export, Arcview Shapefile and MapInfo mid/mif Medium: Free online
1:1Million - Vector data was produced by generalising Geoscience Australia's GEODATA TOPO 250K Series 1 data and updated using Series 2 data where available in January 2001. Raster data was sourced from USGS and updated using GEODATA 9 Second DEM Series 2, 1:5 million, Vegetation - Present (1988) and National Land and Water Resources data. However, updates have not been subjected to thorough vetting. A more detailed land use classification for Australia is available at www.nlwra.gov.au.
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_48006
1:2.5Million - Data for the Contours, Offshore, and Sand ridge layers was captured from 1:2.5 million scale mapping by scanning stable base photographic film positives of the original map production material. The key source material for Built-up areas, Drainage, Spot heights, Framework, Localities, Rail transport, Road transport and Waterbodies layers was GEODATA TOPO 2.5M 2003
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_60804
1:5Million - Offshore and Sand Ridge layers have been derived from 1:5M scale mapping by scanning stable base photographic film positives of the various layers of the original map production material. The remaining layers were sourced from the GEODATA TOPO 2.5M 2003 product.
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_61114
1:10Million - The key source for production of the Builtup Areas, Drainage, Framework, Localities, Rail Transport, Road Transport and Waterbodies layers was the GEODATA TOPO 250K Series 1 product. Some revision of the Builtup Areas, Road Transport, Rail Transport and Waterbodies layers was carried out using the latest available satelite imagery. The primary source for the Spot Heights, Contours and Offshore layers was the GEODATA TOPO 10M Version 1 product. A further element to the production of GEODATA TOPO 10M 2002 has been the datum shift from the Australian Geodetic Datum 1966 (AGD66) to the Geocentric Datum of Australia 1994 (GDA94).
Full Metadata - http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_60803
Geoscience Australia (2001) Geoscience Australia GEODATA TOPO series - 1:1 Million to 1:10 Million scale. Bioregional Assessment Source Dataset. Viewed 09 October 2018, http://data.bioregionalassessments.gov.au/dataset/310c5d07-5a56-4cf7-a5c8-63bdb001cd1a.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Rising sea levels (SLR) will cause coastal groundwater to rise in many coastal urban environments. Inundation of contaminated soils by groundwater rise (GWR) will alter the physical, biological, and geochemical conditions that influence the fate and transport of existing contaminants. These transformed products can be more toxic and/or more mobile under future conditions driven by SLR and GWR. We reviewed the vulnerability of contaminated sites to GWR in a US national database and in a case comparison with the San Francisco Bay region to estimate the risk of rising groundwater to human and ecosystem health. The results show that 326 sites in the US Superfund program may be vulnerable to changes in groundwater depth or flow direction as a result of SLR, representing 18.1 million hectares of contaminated land. In the San Francisco Bay Area, we found that GWR is predicted to impact twice as much coastal land area as inundation from SLR alone, and 5,297 state-managed sites of contamination may be vulnerable to inundation from GWR in a 1-meter SLR scenario. Increases of only a few centimeters of elevation can mobilize soil contaminants, alter flow directions in a heterogeneous urban environment with underground pipes and utility trenches, and result in new exposure pathways. Pumping for flood protection will elevate the salt water interface, changing groundwater salinity and mobilizing metals in soil. Socially vulnerable communities are more exposed to this risk at both the national scale and in a regional comparison with the San Francisco Bay Area. Methods Data Dryad This data set includes data from the California State Water Resources Control Board (WRCB), the California Department of Toxic Substances Control (DTSC), the USGS, the US EPA, and the US Census. National Assessment Data Processing: For this portion of the project, ArcGIS Pro and RStudio software applications were used. Data processing for superfund site contaminants in the text and supplementary materials was done in RStudio using R programming language. RStudio and R were also used to clean population data from the American Community Survey. Packages used include: Dplyr, data.table, and tidyverse to clean and organize data from the EPA and ACS. ArcGIS Pro was used to compute spatial data regarding sites in the risk zone and vulnerable populations. DEM data processed for each state removed any elevation data above 10m, keeping anything 10m and below. The Intersection tool was used to identify superfund sites within the 10m sea level rise risk zone. The Calculate Geometry tool was used to calculate the area within each coastal state that was occupied by the 10m SLR zone and used again to calculate the area of each superfund site. Summary Statistics were used to generate the total proportion of superfund site surface area / 10m SLR area for each state. To generate population estimates of socially vulnerable households in proximity to superfund sites, we followed methods similar to that of Carter and Kalman (2020). First, we generated buffers at the 1km, 3km, and 5km distance of superfund sites. Then, using Tabulate Intersection, the estimated population of each census block group within each buffer zone was calculated. Summary Statistics were used to generate total numbers for each state. Bay Area Data Processing: In this regional study, we compared the groundwater elevation projections by Befus et al (2020) to a combined dataset of contaminated sites that we built from two separate databases (Envirostor and GeoTracker) that are maintained by two independent agencies of the State of California (DTSC and WRCB). We used ArcGIS to manage both the groundwater surfaces, as raster files, from Befus et al (2020) and the State’s point datasets of street addresses for contaminated sites. We used SF BCDC (2020) as the source of social vulnerability rankings for census blocks, using block shapefiles from the US Census (ACS) dataset. In addition, we generated isolines that represent the magnitude of change in groundwater elevation in specific sea level rise scenarios. We compared these isolines of change in elevation to the USGS geological map of the San Francisco Bay region and noted that groundwater is predicted to rise farther inland where Holocene paleochannels meet artificial fill near the shoreline. We also used maps of historic baylands (altered by dikes and fill) from the San Francisco Estuary Institute (SFEI) to identify the number of contaminated sites over rising groundwater that are located on former mudflats and tidal marshes. The contaminated sites' data from the California State Water Resources Control Board (WRCB) and the Department of Toxic Substances (DTSC) was clipped to our study area of nine-bay area counties. The study area does not include the ocean shorelines or the north bay delta area because the water system dynamics differ in deltas. The data was cleaned of any duplicates within each dataset using the Find Identical and Delete Identical tools. Then duplicates between the two datasets were removed by running the intersect tool for the DTSC and WRCB point data. We chose this method over searching for duplicates by name because some sites change names when management is transferred from DTSC to WRCB. Lastly, the datasets were sorted into open and closed sites based on the DTSC and WRCB classifications which are shown in a table in the paper's supplemental material. To calculate areas of rising groundwater, we used data from the USGS paper “Projected groundwater head for coastal California using present-day and future sea-level rise scenarios” by Befus, K. M., Barnard, P., Hoover, D. J., & Erikson, L. (2020). We used the hydraulic conductivity of 1 condition (Kh1) to calculate areas of rising groundwater. We used the Raster Calculator to subtract the existing groundwater head from the groundwater head under a 1-meter of sea level rise scenario to find the areas where groundwater is rising. Using the Reclass Raster tool, we reclassified the data to give every cell with a value of 0.1016 meters (4”) or greater a value of 1. We chose 0.1016 because groundwater rise of that little can leach into pipes and infrastructure. We then used the Raster to Poly tool to generate polygons of areas of groundwater rise.
This excel contains results from the 2017 State of Narragansett Bay and Its Watershed Technical Report (nbep.org), Chapter 4: "Population." The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 1990, 2000, and 2010 10m cell population density rasters were produced using Rhode Island state land use data, Massachusetts state land use, Connecticut NLCD land use data, and U.S. Census data. To generate a population estimate (number of persons) for any given area within the boundaries of this raster, NBEP used the the Zonal Statistics as Table tool to sum the 10m cell density values within a given zone dataset (e.g., watershed polygon layer). Results presented include population estimates (1990, 2000, 2010) as well as calculation of percent change (1990-2000;2000-2010;1990-2010).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: The Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3 data set contains land areas with urban, quasi-urban, rural, and total populations (counts) within the LECZ for 234 countries and other recognized territories for the years 1990, 2000, and 2015. This data set updates initial estimates for the LECZ population by drawing on a newer collection of input data, and provides a range of estimates for at-risk population and land area. Constructing accurate estimates requires high-quality and methodologically consistent input data, and the LECZv3 evaluates multiple data sources for population totals, digital elevation model, and spatially-delimited urban classifications. Users can find the paper "Estimating Population and Urban Areas at Risk of Coastal Hazards, 1990-2015: How data choices matter" (MacManus, et al. 2021) in order to evaluate selected inputs for modeling Low Elevation Coastal Zones. According to the paper, the following are considered core data sets for the purposes of LECZv3 estimates: Multi-Error-Removed Improved-Terrain Digital Elevation Model (MERIT-DEM), Global Human Settlement (GHSL) Population Grid R2019 and Degree of Urbanization Settlement Model Grid R2019a v2, and the Gridded Population of the World, Version 4 (GPWv4), Revision 11. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) and the City University of New York (CUNY) Institute for Demographic Research (CIDR). Purpose: To provide estimates of urban and rural populations and land areas for the years 1990, 2000, 2015 for 234 countries and statistical areas with contiguous coastal elevations of less than or equal to 5m above sea level, 5-10m above sea level, and national totals using multiple updated data sources for comparative analysis. Citation: Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3. Center for International Earth Science Information Network - CIESIN - Columbia University, and CUNY Institute for Demographic Research - CIDR - City University of New York. (2021). NASA Socioeconomic Data and Applications Center (SEDAC). DOI: https://doi.org/10.7927/H4TM782G Legend:
Color
Service Pixel Value
Legend Label
Description:
5
0 - 5m LECZ
LECZs are derived from Multi-Error-Removed Improved Terrain Digital Elevation Model (MERIT-DEM) are provided as a spatial layer in a 9 arc second resolution raster (GeoTIFF). This data categorically demarcates the two low elevation coastal zones (0-5m and 5-10m LECZs) and a third category representing the non-coastal areas at any elevation (outside of LECZs) coded as 31. This raster data is also provided as a web map and image service. It is in the WGS84 coordinate system.
10
>5 - 10m LECZ
31
>10m - Outside of LECZ
Resolution: nine arc-seconds (~300m) Publication References:Low Elevation Coastal Zone (LECZ) Urban-Rural Population Estimates, Global Rural-Urban Mapping Project (GRUMP), Alpha Version. McGranahan, G., D. Balk, and B. Anderson. (2007). NASA Socioeconomic Data and Applications Center (SEDAC). DOI: https://doi.org/10.7927/H4TM782GLow Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 2. Center for International Earth Science Information Network - CIESIN - Columbia University. (2013). NASA Socioeconomic Data and Applications Center (SEDAC). DOI: https://doi.org/10.7927/H4MW2F2JSea Level Rise Impacts on Ramsar Wetlands of International Importance. Center for International Earth Science Information Network - CIESIN - Columbia University. (2013). NASA Socioeconomic Data and Applications Center (SEDAC). DOI: https://doi.org/10.7927/H4CC0XMDDocumentation for the Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3. Center For International Earth Science Information Network - CIESIN - Columbia University. (2021). NASA Socioeconomic Data and Applications Center (SEDAC). DOI: https://doi.org/10.7927/z0r0-gc08
Soil loss tolerance factor is the maximum rate of soil loss that will permit crop productivity to be sustained economically and indefinitely on a given soil. Soil loss tolerance is expressed as tons/acre/year. The primary use for soil loss tolerance factor is evaluating the effectiveness of erosion control measures on farmland. Soil loss tolerance factor serves as a quantitative standard to compare to erosion rate estimates from models such as the Revised Universal Soil Loss Equation. Farmlands where soil loss tolerance factor is less than modeled erosion rates are considered unsustainable.Dataset SummaryPhenomenon Mapped: Soil loss toleranceUnits: tons/acre/yearCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for soil loss tolerance is derived from the gSSURGO component table field T (tfact). The value in this layer is the average value for all components of each map unit weighted by component percent (comppct_r). What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "loss tolerance" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "loss tolerance" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
When rain falls over land, a portion of it runs off into stream channels and storm water systems while the remainder infiltrates into the soil or returns to the atmosphere directly through evaporation.Physical properties of soil affect the rate that water is absorbed and the amount of runoff produced by a storm. Hydrologic soil group provides an index of the rate that water infiltrates a soil and is an input to rainfall-runoff models that are used to predict potential stream flow.For more information on using hydrologic soil group in hydrologic modeling see the publication Urban Hydrology for Small Watersheds (Natural Resources Conservation Service, United States Department of Agriculture, Technical Release–55).Dataset SummaryPhenomenon Mapped: Soil hydrologic groupUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for hydrologic group is derived from the gSSURGO map unit aggregated attribute table field Hydrologic Group - Dominant Conditions (hydgrpdcd).The seven classes of hydrologic soil group followed by definitions:Group A - Group A soils consist of deep, well drained sands or gravelly sands with high infiltration and low runoff rates.Group B - Group B soils consist of deep well drained soils with a moderately fine to moderately coarse texture and a moderate rate of infiltration and runoff.Group C - Group C consists of soils with a layer that impedes the downward movement of water or fine textured soils and a slow rate of infiltration.Group D - Group D consists of soils with a very slow infiltration rate and high runoff potential. This group is composed of clays that have a high shrink-swell potential, soils with a high water table, soils that have a clay pan or clay layer at or near the surface, and soils that are shallow over nearly impervious material.Group A/D - Group A/D soils naturally have a very slow infiltration rate due to a high water table but will have high infiltration and low runoff rates if drained.Group B/D - Group B/D soils naturally have a very slow infiltration rate due to a high water table but will have a moderate rate of infiltration and runoff if drained.Group C/D - Group C/D soils naturally have a very slow infiltration rate due to a high water table but will have a slow rate of infiltration if drained.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "soil hydrologic group" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "soil hydrologic group" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Soil erodibility factor, also known as K factor, is one of the 5 inputs to the Universal Soil Loss Equation. Soil erodibility factor quantifies the susceptibility of soil particles to detachment and movement by water. For more information on how soil erodibilty factor is calculated see the National Soil Survey Handbook.The Universal Soil Loss Equation is a mathematical model commonly used to estimate soil erosion rates. Originally designed for the management and conservation of farmland soils, the USLE is now used for a variety of other projects such as managing non-point pollution and sediment load in streams. In the United States, the equation is frequently used by federal agencies. For example federal regulations require that the Department of Agriculture identify highly erodible land based on the Universal Soil Loss Equation and its derivative models.Dataset SummaryPhenomenon Mapped: Erodibility factorUnits: NoneCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). This field was calculated by selecting the least transmissive horizon of the dominant component for each mapunit. The values are in units of Micrometers per second (μm/s).What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "erodibility factor" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "erodibility factor" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
The Farmland Protection Policy Act, part of the 1981 Farm Bill, is intended to limit federal activities that contribute to the unnecessary conversion of farmland to other uses. The law applies to construction projects funded by the federal government such as highways, airports, and dams, and to the management of federal lands. As part of the implementation of this law, the Natural Resources Conservation Service identifies high quality agricultural soils as prime farmland, unique farmland, and land of statewide or local importance. Each category may contain one or more limitations such as Prime Farmland if Irrigated. For a complete list of categories and definitions, see the National Soil Survey Handbook.All areas are prime farmlandFarmland of local importanceFarmland of statewide importanceFarmland of statewide importance, if drainedFarmland of statewide importance, if drained and either protected from flooding or not frequently flooded during the growing seasonFarmland of statewide importance, if irrigatedFarmland of statewide importance, if irrigated and drainedFarmland of statewide importance, if irrigated and either protected from flooding or not frequently flooded during the growing seasonFarmland of statewide importance, if irrigated and reclaimed of excess salts and sodiumFarmland of statewide importance, if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60Farmland of statewide importance, if protected from flooding or not frequently flooded during the growing seasonFarmland of statewide importance, if warm enoughFarmland of statewide importance, if warm enough, and either drained or either protected from flooding or not frequently flooded during the growing seasonFarmland of unique importanceNot prime farmlandPrime farmland if drainedPrime farmland if drained and either protected from flooding or not frequently flooded during the growing seasonPrime farmland if irrigatedPrime farmland if irrigated and drainedPrime farmland if irrigated and either protected from flooding or not frequently flooded during the growing seasonPrime farmland if irrigated and reclaimed of excess salts and sodiumPrime farmland if irrigated and the product of I (soil erodibility) x C (climate factor) does not exceed 60Prime farmland if protected from flooding or not frequently flooded during the growing seasonPrime farmland if subsoiled, completely removing the root inhibiting soil layerDataset SummaryPhenomenon Mapped: FarmlandUnits: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa)Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaSource: Natural Resources Conservation ServicePublication Date: December 2021ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the contiguous United States, Alaska, Puerto Rico, and the U.S. Virgin Islands. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for farmland class is derived from the gSSURGO map unit table field Farm Class (farmlndcl).What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "farmland" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "farmland" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Population density in 1990 within the boundaries of the Narragansett Bay watershed, the Southwest Coastal Ponds watershed, and the Little Narragansett Bay watershed. The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 1990 10m cell population density raster was produced using Rhode Island 1988 state land use data, Massachusetts 1985 state land use, Connecticut 1992 NLCD land use data, and U.S. Census data (1990). To generate a population estimate (number of persons) for any given area within the boundaries of this raster, use the Zonal Statistics as Table tool to sum the 10m cell density values within your zone dataset (e.g., watershed polygon layer). For more information, please reference the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org).