A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.
It is only in the past two centuries where demographics and the development of human populations has emerged as a subject in its own right, as industrialization and improvements in medicine gave way to exponential growth of the world's population. There are very few known demographic studies conducted before the 1800s, which means that modern scholars have had to use a variety of documents from centuries gone by, along with archeological and anthropological studies, to try and gain a better understanding of the world's demographic development. Genealogical records One such method is the study of genealogical records from the past; luckily, there are many genealogies relating to European families that date back as far as medieval times. Unfortunately, however, all of these studies relate to families in the upper and elite classes; this is not entirely representative of the overall population as these families had a much higher standard of living and were less susceptible to famine or malnutrition than the average person (although elites were more likely to die during times of war). Nonetheless, there is much to be learned from this data. Impact of the Black Death In the centuries between 1200 and 1745, English male aristocrats who made it to their 21st birthday were generally expected to live to an age between 62 and 72 years old. The only century where life expectancy among this group was much lower was in the 1300s, where the Black Death caused life expectancy among adult English noblemen to drop to just 45 years. Experts assume that the pre-plague population of England was somewhere between four and seven million people in the thirteenth century, and just two million in the fourteenth century, meaning that Britain lost at least half of its population due to the plague. Although the plague only peaked in England for approximately eighteen months, between 1348 and 1350, it devastated the entire population, and further outbreaks in the following decades caused life expectancy in the decade to drop further. The bubonic plague did return to England sporadically until the mid-seventeenth century, although life expectancy among English male aristocrats rose again in the centuries following the worst outbreak, and even peaked at more than 71 years in the first half of the sixteenth century.
Life expectancy in France was below thirty in the late 1700s, but over the course of the next two and a half centuries it is expected to reach 82.5 by the year 2020. Although life expectancy has generally increased throughout France's history, there were several times where the rate deviated from its previous trajectory. The most noticeable changes were because of smallpox and influenza epidemics in the 1700s, medical advancements (such as vaccination and pasteurization) saw life expectancy increase in the 1800s, and then both World Wars and the epidemics that followed caused brief drops in the first half of the twentieth century.
Keywords; Search terms: historical time series; historical statistics; histat / HISTAT . Abstract: In this study the constantly rising human life expectancy since the beginning of the 18th century is analysed in some regions of Germany in comparative point of view. On the basis of worldwide singular sources in terms of clan registers of villages and localities as well as flow sheets the researcher Arthur E. Imhof and his research group of the ‘Freie Universität Berlin’ analysed more than 130.000 individual biografies from the 17th till the 19th century in six regions of northern, southern and central Germany. Aim of this research project was to compile area life-tables and to compute the life-expectancy. To enable comparisons with life-expectancy-calculations of today, all data originally prepared by generations are transformed into period-tables according to modern demografic methods. Topics Regional and national datafiles on populationstructure, development of mortality, historical demography, family structure, date of birth, marriages, number of birth, date of death, cause of death, locality of death, occupation, occupation of the parents. This study is available as SPSS-Data file as well as a downloadable EXCEL-Data-File, offered via the online-downloadsystem HISTAT (Historical Statistics). In HISTAT timeseries data are available. Categorisation in HISTAT:In HISTAT an excerpt of the archived total data stock is offered. The total data stock can be ordered as individual personal data at GESIS, Data Archive and Data Analysis. A. Datatables about mortality (14 tables, timeseries)B. Synoptical mortality tables (14 tables, timeseries)C. Datatables about life expectancy (14 tables, timeseries)D. Synoptical tables: all regions (without Hamburg) by sex in periodical presentation. (14 tables, timeseries)
Life expectancy in the United Kingdom was below 39 years in the year 1765, and over the course of the next two and a half centuries, it is expected to have increased by more than double, to 81.1 by the year 2020. Although life expectancy has generally increased throughout the UK's history, there were several times where the rate deviated from its previous trajectory. These changes were the result of smallpox epidemics in the late eighteenth and early nineteenth centuries, new sanitary and medical advancements throughout time (such as compulsory vaccination), and the First world War and Spanish Flu epidemic in the 1910s.
Keywords; Search terms: historical time series; historical statistics; histat / HISTAT; life expectancy; mortality rates .
Abstract:
In this study human life expectancy, which since the start of the 18th century has continually increased, is investigated in comparative perspective in Germany, Sweden and Norway.
Topics: Regional as well as national data sets on population structure and the development of mortality.
The following table overview represents a cutout from the study´s archived total stocks. The complete data stock contains not only time-series data. These complete data are available by GESIS Data Archive on request.
Topics of Data-Tables with Time-Series:
I (risk) population by generations II (risk) population by periods III probability of dying by generations IV probability of dying by periods V life expectancy by generations VI life expectancy by periods
Systematics within the tables (Consecutively Numbering)
Place: Letter indicating the region: A. Germany (German Reich)/FRG B. Germany (German Reich)/GDR C. governmental district Aurich/Lower Saxony D. governmental district Kassel/Hessen E. governmental district Minden/North Rhine-Westphalia F. governmental district Trier/Saarland H. Herrenberg/South West Germany (Südwestdeuschland) N. Norway S. Sweden
Place: Number for the table´s subject (variable)
(risk) population (P´ x)
Probability of dying (qx)
Life expectancy (ex)
Place: Letter for the type of table (meaning of the annual details) P. period table G. generation table
At the beginning of the 1840s, life expectancy from birth in Ireland was just over 38 years. However, this figure would see a dramatic decline with the beginning of the Great Famine in 1845, and dropped below 21 years in the second half of the decade (in 1849 alone, life expectancy fell to just 14 years). The famine came as a result of a Europe-wide potato blight, which had a disproportionally devastating impact on the Irish population due to the dependency on potatoes (particularly in the south and east), and the prevalence of a single variety of potato on the island that allowed the blight to spread faster than in other areas of Europe. Additionally, authorities forcefully redirected much of the country's surplus grain to the British mainland, which exacerbated the situation. Within five years, mass starvation would contribute to the deaths of over one million people on the island, while a further one million would emigrate; this also created a legacy of emigration from Ireland, which saw the population continue to fall until the mid-1900s, and the total population of the island is still well below its pre-famine level of 8.5 million people.
Following the end of the Great Famine, life expectancy would begin to gradually increase in Ireland, as post-famine reforms would see improvements in the living standards of the country’s peasantry, most notably the Land Wars, a largely successful series of strikes, boycotts and protests aimed at reform of the country's agricultural land distribution, which began in the 1870s and lasted into the 20th century. As these reforms were implemented, life expectancy in Ireland would rise to more than fifty years by the turn of the century. While this rise would slow somewhat in the 1910s, due to the large number of Irish soldiers who fought in the First World War and the Spanish Flu pandemic, as well as the period of civil unrest leading up to the island's partition in 1921, life expectancy in Ireland would rise greatly in the 20th century. In the second half of the 20th century, Ireland's healthcare system and living standards developed similarly to the rest of Western Europe, and today, it is often ranks among the top countries globally in terms of human development, GDP and quality of healthcare. With these developments, the increase in life expectancy from birth in Ireland was relatively constant in the first century of independence, and in 2020 is estimated to be 82 years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file provides the necessary input data (crude vital rates) and shows the calculations for the indirect estimation of life expectancy at birth (e0) for males and females combined, using the method developed in McCann, J. 1976. 'A Technique for Estimating Life Expectancy with Crude Vital Rates', Demography, 13(2): pp. 259-272.
Coverage: Sweden (1736-1750), Norway (1735-1845), Denmark (1800-1834), Iceland (1735-1837), and Finland (1751-1877).
The annual estimates end in the year before estimates in the Human Mortality Database become available.
For a detailed description see Torres, C. and Oeppen, J. 2019. The Health Transition in the Nordic Countries (Working paper, available upon request: ctorres@sdu.dk).
Life expectancy in India was 25.4 in the year 1800, and over the course of the next 220 years, it has increased to almost 70. Between 1800 and 1920, life expectancy in India remained in the mid to low twenties, with the largest declines coming in the 1870s and 1910s; this was because of the Great Famine of 1876-1878, and the Spanish Flu Pandemic of 1918-1919, both of which were responsible for the deaths of up to six and seventeen million Indians respectively; as well as the presence of other endemic diseases in the region, such as smallpox. From 1920 onwards, India's life expectancy has consistently increased, but it is still below the global average.
Life expectancy in Japan was 36.4 in the year 1860, and over the course of the next 160 years, it is expected to have increased to 84.4, which is the second highest in the world (after Monaco). Although life expectancy has generally increased throughout Japan's history, there were several times where the rate deviated from its previous trajectory. These changes were a result of the Spanish Flu in the 1910s, the Second World War in the 1940s, and the sharp increase was due to the high rate of industrialization and economic prosperity in Japan, in the mid-twentieth century.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Study of disease in the past can help illuminate patterns of human health, disease, and aging in the present. As average human life expectancy and incidence of chronic disease have increased in the last century, efforts to understand this epidemiologic shift have led to more investigation of healthy aging. Using osteological and radiological methods of analysis, this study examined 212 mostly nineteenth century adult skeletons from the crypt of St. Bride’s in London, in order to investigate the relationship between age-at-death, sex, and number of lesions observed in bone. Lesions were classified into macro-level categories according to the Rapid Method for Recording Human Skeletal Data, and the correlation between age group and number of lesions in each category, as well as the total number of lesions, were analyzed. Correlations between age-at-death and the number and type of lesions were compared across both methods of analysis. A greater total number of lesions and a greater number of types of lesions was observed for the osteologically analyzed data, compared to the radiologically analyzed data. Correlations between age-at-death and specific pathology groups were in general weak, though stronger for the osteologically analyzed data. For each method of analysis, there were statistically significant differences between the total number of lesions and age group, with total number of lesions increasing with age, regardless of method of analysis. Joint and metabolic lesions were the most significant predictors of age-at-death. The correlations between total lesions observed and age-at-death were similar for radiologically and osteologically analyzed data, for the same set of bones. This suggests that, for the bones analyzed, while the number of lesions recorded differed according to method of analysis, the relationship between overall observed lesion burden and age-at-death was similar for both osteological and radiological analysis.
Life expectancy in Germany was below 39 in the year 1875, and over the course of the next 145 years, it is expected to have increased to above 81 years in the year 2020. Although life expectancy has generally increased throughout Germany's history, there were several times where the rate deviated from its previous trajectory. The most notable changes were because of the First and Second World Wars, in the first half of the twentieth century.
Life expectancy in Russia was 29.6 in the year 1845, and over the course of the next 175 years, it is expected to have increased to 72.3 years by 2020. Generally speaking, Russian life expectancy has increased over this 175 year period, however events such as the World Wars, Russian Revolution and a series of famines caused fluctuations before the mid-twentieth century, where the rate fluctuated sporadically. Between 1945 and 1950, Russian life expectancy more than doubled in this five year period, and it then proceeded to increase until the 1970s, when it then began to fall again. Between 1970 and 2005, the number fell from 68.5 to 65, before it then grew again in more recent years.
Life expectancy in Austria was below 35 in the year 1870, and over the course of the next 150 years, it is expected to have increased to over 81 years by 2020. Although life expectancy has generally increased throughout Austria's history, there were several times where the rate deviated from its previous trajectory. Most noticeably, these were caused by both World Wars, and the Spanish Flu epidemic during and after WWI.
Life expectancy in Italy was just under thirty in the year 1870, and over the course of the next 150 years, it is expected to have increased to 83.3 by the year 2020. Although life expectancy has generally increased throughout Italy's history, there were several times where the rate deviated from its previous trajectory. The most noticeable changes were a result of the First World War and Spanish Flu epidemic, and also the Second World War and Italian Civil War.
Life expectancy in China was just 32 in the year 1850, and over the course of the next 170 years, it is expected to more than double to 76.6 years in 2020. Between 1850 and 1950, finding reliable data proved difficult for anthropologists, however some events, such as the Taiping Rebellion and Dungan Revolt in the nineteenth century did reduce life expectancy by a few years, and also the Chinese Civil War and Second World War in the first half of the twentieth century. In the second half of the 1900s, Chinese life expectancy increased greatly, as the country became more industrialized and the standard of living increased.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description of the explanatory factors included in the study, Longitudinal Aging Study (LASI) Wave 1, India 2017–18.
The child mortality rate in the United States, for children under the age of five, was 462.9 deaths per thousand births in 1800. This means that for every thousand babies born in 1800, over 46 percent did not make it to their fifth birthday. Over the course of the next 220 years, this number has dropped drastically, and the rate has dropped to its lowest point ever in 2020 where it is just seven deaths per thousand births. Although the child mortality rate has decreased greatly over this 220 year period, there were two occasions where it increased; in the 1870s, as a result of the fourth cholera pandemic, smallpox outbreaks, and yellow fever, and in the late 1910s, due to the Spanish Flu pandemic.
There were 667,479 deaths in the United Kingdom in 2021, compared with 689,629 in 2020. Between 2003 and 2011, the annual number of deaths in the UK fell from 612,085 to just over 552,232. Since 2011 however, the annual number of annual deaths in the United Kingdom has steadily grown, with the number recorded in 2020, the highest since 1918 when there were 715,246 deaths. Both of these spikes in the number of deaths can be attributed to infectious disease pandemics. The great influenza pandemic of 1918, which was at its height towards the end of World War One, and the COVID-19 pandemic, which caused a large number of deaths in 2020. Impact of the COVID-19 pandemic The weekly death figures for England and Wales highlight the tragic toll of the COVID-19 pandemic. In two weeks in April of 2020, there were 22,351 and 21,997 deaths respectively, almost 12,000 excess deaths in each of those weeks. Although hospitals were the most common location of these deaths, a significant number of these deaths also took place in care homes, with 7,911 deaths taking place in care homes for the week ending April 24, 2020, far higher than usual. By the summer of 2020, the number of deaths in England and Wales reached more usual levels, before a second wave of excess deaths hit the country in early 2021. Although subsequent waves of COVID-19 cases resulted in far fewer deaths, the number of excess deaths remained elevated throughout 2022. Long-term life expectancy trends As of 2022 the life expectancy for men in the United Kingdom was 78.57, and almost 82.57 for women, compared with life expectancies of 75 for men and 80 for women in 2002. In historical terms, this is a major improvement in relation to the mid 18th century, when the overall life expectancy was just under 39 years. Between 2011 and 2017, improvements in life expectancy in the UK did start to decline, and have gone into reverse since 2018/20. Between 2020 and 2022 for example, life expectancy for men in the UK has fallen by over 37 weeks, and by almost 23 weeks for women, when compared with the previous year.
The child mortality rate in the United Kingdom, for children under the age of five, was 329 deaths per thousand births in 1800. This means that approximately one in every three children born in 1800 did not make it to their fifth birthday. Over the course of the next 220 years, this number has dropped drastically, particularly in the first half of the twentieth century, and the rate has dropped to its lowest point ever in 2020 where it is just four deaths per thousand births.
A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.