85 datasets found
  1. Historic US census - 1930

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US census - 1930 [Dataset]. http://doi.org/10.57761/6e5q-rh85
    Explore at:
    sas, spss, avro, parquet, csv, stata, application/jsonl, arrowAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1930 - Dec 31, 1930
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1930 households: This dataset includes all households from the 1930 US census.

    IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.

    IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

    Section 2

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.

    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.

    • Coded variables derived from string variables are still in progress. These variables include: occupation and industry.

    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.

    • Most inconsistent information was not edite

  2. a

    1930 Census Data for NEH Workshop

    • neh-summer-2022-workshop-tga.hub.arcgis.com
    Updated Jul 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tennessee Geographic Alliance (2022). 1930 Census Data for NEH Workshop [Dataset]. https://neh-summer-2022-workshop-tga.hub.arcgis.com/maps/b3ec6cde5a90476b912785c8b4c145fc
    Explore at:
    Dataset updated
    Jul 6, 2022
    Dataset authored and provided by
    Tennessee Geographic Alliance
    Area covered
    Description

    This map depicts US Census data from the 1930 decennial census for total population and race

  3. d

    Census Tracts in 1930

    • catalog.data.gov
    • opendata.dc.gov
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D.C. Office of the Chief Technology Officer (2025). Census Tracts in 1930 [Dataset]. https://catalog.data.gov/dataset/census-tracts-in-1930
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    D.C. Office of the Chief Technology Officer
    Description

    Census Year 1930 Census Tracts. The dataset contains polygons representing CY 1930 census tracts, created as part of the D.C. Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Census tracts were identified from maps provided by the U.S. Census Bureau and the D.C. Office of Planning. The tract polygons were created by selecting street arcs from the WGIS planimetric street centerlines. Where necessary, polygons were also heads-up digitized from 1995/1999 orthophotographs. METADATA CONTENT IS IN PROCESS OF VALIDATION AND SUBJECT TO CHANGE.

  4. e

    1930 United States Federal Census

    • ebroy.org
    Updated 1930
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Year: 1930; Census Place: Swanzey, Cheshire, New Hampshire; Page: 7B; Enumeration District: 0029; FHL microfilm: 2341034 (1930). 1930 United States Federal Census [Dataset]. https://ebroy.org/profile/?person=P16
    Explore at:
    Dataset updated
    1930
    Dataset authored and provided by
    Year: 1930; Census Place: Swanzey, Cheshire, New Hampshire; Page: 7B; Enumeration District: 0029; FHL microfilm: 2341034
    Area covered
    United States
    Description

    1930 United States Federal Census contains records from Swanzey, Cheshire, New Hampshire, USA by Year: 1930; Census Place: Swanzey, Cheshire, New Hampshire; Page: 7B; Enumeration District: 0029; FHL microfilm: 2341034 - .

  5. T

    1930 Census Data for Austin, Texas

    • dataverse.tdl.org
    Updated Sep 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Shreeve Bridges; Amy Shreeve Bridges (2024). 1930 Census Data for Austin, Texas [Dataset]. http://doi.org/10.18738/T8/7KW86C
    Explore at:
    text/comma-separated-values(10492696)Available download formats
    Dataset updated
    Sep 30, 2024
    Dataset provided by
    Texas Data Repository
    Authors
    Amy Shreeve Bridges; Amy Shreeve Bridges
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Texas, Austin
    Description

    This is the census data collected for Austin, Texas in 1930.

  6. T

    1930 Census Data Map Shapefile

    • dataverse.tdl.org
    application/dbf +7
    Updated Sep 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Shreeve Bridges; Amy Shreeve Bridges (2024). 1930 Census Data Map Shapefile [Dataset]. http://doi.org/10.18738/T8/BYQVJF
    Explore at:
    application/shp(364184), xml(14473), application/shx(104124), bin(5), application/sbx(6772), application/prj(145), application/sbn(126044), application/dbf(91165187)Available download formats
    Dataset updated
    Sep 30, 2024
    Dataset provided by
    Texas Data Repository
    Authors
    Amy Shreeve Bridges; Amy Shreeve Bridges
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is the shapefile of the mapped 1930 census data for Austin, Texas.

  7. r

    Persons

    • redivis.com
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Persons [Dataset]. https://redivis.com/datasets/hs2s-9ff789s72
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Time period covered
    1930
    Description

    This dataset includes all individuals from the 1930 US census.

  8. o

    The Census Tree, 1860-1930

    • openicpsr.org
    Updated Aug 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Price; Kasey Buckles; Adrian Haws; Haley Wilbert (2023). The Census Tree, 1860-1930 [Dataset]. http://doi.org/10.3886/E193228V1
    Explore at:
    Dataset updated
    Aug 8, 2023
    Dataset provided by
    Cornell University
    University of Notre Dame
    Brigham Young University
    Authors
    Joseph Price; Kasey Buckles; Adrian Haws; Haley Wilbert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1860 - 1930
    Area covered
    United States
    Description

    The Census Tree is the largest-ever database of record links among the historical U.S. censuses, with over 700 million links for people living in the United States between 1850 and 1940. These links allow researchers to construct a longitudinal dataset that is highly representative of the population, and that includes women, Black Americans, and other under-represented populations at unprecedented rates. Each .csv file consists of a crosswalk between the two years indicated in the filename, using the IPUMS histids. For more information, consult the included Read Me file, and visit https://censustree.org.

  9. o

    The Census Tree, 1930-1940

    • openicpsr.org
    delimited
    Updated Aug 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Price; Kasey Buckles; Adrian Haws; Haley Wilbert (2023). The Census Tree, 1930-1940 [Dataset]. http://doi.org/10.3886/E193232V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Aug 8, 2023
    Dataset provided by
    Cornell University
    University of Notre Dame
    Brigham Young University
    Authors
    Joseph Price; Kasey Buckles; Adrian Haws; Haley Wilbert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1930 - 1940
    Area covered
    United States
    Description

    The Census Tree is the largest-ever database of record links among the historical U.S. censuses, with over 700 million links for people living in the United States between 1850 and 1940. These links allow researchers to construct a longitudinal dataset that is highly representative of the population, and that includes women, Black Americans, and other under-represented populations at unprecedented rates. Each .csv file consists of a crosswalk between the two years indicated in the filename, using the IPUMS histids. For more information, consult the included Read Me file, and visit https://censustree.org.

  10. e

    1930 United States Federal Census

    • ebroy.org
    Updated 1930
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Year: 1930; Census Place: Ambler, Montgomery, Pennsylvania; Page: 7A; Enumeration District: 0013; FHL microfilm: 2341814 (1930). 1930 United States Federal Census [Dataset]. https://ebroy.org/profile/?person=P24
    Explore at:
    Dataset updated
    1930
    Dataset authored and provided by
    Year: 1930; Census Place: Ambler, Montgomery, Pennsylvania; Page: 7A; Enumeration District: 0013; FHL microfilm: 2341814
    Area covered
    United States
    Description

    1930 United States Federal Census contains records from Ambler, Montgomery, Pennsylvania, USA by Year: 1930; Census Place: Ambler, Montgomery, Pennsylvania; Page: 7A; Enumeration District: 0013; FHL microfilm: 2341814 - .

  11. r

    Lookup

    • redivis.com
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Lookup [Dataset]. https://redivis.com/datasets/hs2s-9ff789s72
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Description

    This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

  12. e

    1920 United States Federal Census

    • ebroy.org
    Updated 1920
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fourteenth Census of the United States, 1920. (NARA microfilm publication T625, 2076 rolls). Records of the Bureau of the Census, Record Group 29. National Archives, Washington, D.C. Year: 1920; Census Place: Philadelphia Ward 42, Philadelphia, Pennsylvania; Roll: T625_1643; Page: 13A; Enumeration District: 1564 (1920). 1920 United States Federal Census [Dataset]. https://ebroy.org/profile/?person=P14
    Explore at:
    Dataset updated
    1920
    Dataset authored and provided by
    Fourteenth Census of the United States, 1920. (NARA microfilm publication T625, 2076 rolls). Records of the Bureau of the Census, Record Group 29. National Archives, Washington, D.C. Year: 1920; Census Place: Philadelphia Ward 42, Philadelphia, Pennsylvania; Roll: T625_1643; Page: 13A; Enumeration District: 1564
    Area covered
    United States
    Description

    1920 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by Fourteenth Census of the United States, 1920. (NARA microfilm publication T625, 2076 rolls). Records of the Bureau of the Census, Record Group 29. National Archives, Washington, D.C. Year: 1920; Census Place: Philadelphia Ward 42, Philadelphia, Pennsylvania; Roll: T625_1643; Page: 13A; Enumeration District: 1564 - .

  13. 1930 Census Data

    • kaggle.com
    Updated Dec 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Hoffman (2020). 1930 Census Data [Dataset]. https://www.kaggle.com/alexphoffman/1930-census-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 30, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Alex Hoffman
    Description

    Dataset

    This dataset was created by Alex Hoffman

    Contents

  14. r

    Households

    • redivis.com
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Households [Dataset]. https://redivis.com/datasets/hs2s-9ff789s72
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Time period covered
    1930
    Description

    This dataset includes all households from the 1930 US census.

  15. L

    Latvian Population by Sex and Age in 1930 Census Data

    • lida.dataverse.lt
    application/x-gzip +1
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenonas Norkus; Zenonas Norkus; Aelita Ambrulevičiūtė; Aelita Ambrulevičiūtė; Jurgita Markevičiūtė; Jurgita Markevičiūtė; Vaidas Morkevičius; Vaidas Morkevičius; Giedrius Žvaliauskas; Giedrius Žvaliauskas (2025). Latvian Population by Sex and Age in 1930 Census Data [Dataset]. https://lida.dataverse.lt/dataset.xhtml?persistentId=hdl:21.12137/M1M4QK
    Explore at:
    application/x-gzip(8547948), tsv(29521)Available download formats
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    Lithuanian Data Archive for SSH (LiDA)
    Authors
    Zenonas Norkus; Zenonas Norkus; Aelita Ambrulevičiūtė; Aelita Ambrulevičiūtė; Jurgita Markevičiūtė; Jurgita Markevičiūtė; Vaidas Morkevičius; Vaidas Morkevičius; Giedrius Žvaliauskas; Giedrius Žvaliauskas
    License

    https://lida.dataverse.lt/api/datasets/:persistentId/versions/2.3/customlicense?persistentId=hdl:21.12137/M1M4QKhttps://lida.dataverse.lt/api/datasets/:persistentId/versions/2.3/customlicense?persistentId=hdl:21.12137/M1M4QK

    Time period covered
    1919 - 1939
    Area covered
    Livani ([lav] Līvāni), Dobele ([lav] Dobele), Rujiena ([lav] Rūjiena), Subate ([lav] Subate), Kuldiga ([lav] Kuldīga), Valdemarpils (Sasmaka) ([lav] Valdemārpils (Sasmaka)), Piltene ([lav] Piltene), Ogre ([lav] Ogre), Ventspils ([lav] Ventspils), Jaunjelgava ([lav] Jaunjelgava)
    Dataset funded by
    European Social Fund, according to the activity “Improvement of researchers’ qualification by implementing world-class R&D projects“ of Measure No. 09.3.3-LMT-K-712
    Description

    This dataset contains data on population by sex and age on the basis of the results of the Census Data of Latvia, which was carried out on 24 February 1930. Dataset "Latvian Population by Sex and Age in 1930 Census Data" was published implementing project "Historical Sociology of Modern Restorations: a Cross-Time Comparative Study of Post-Communist Transformation in the Baltic States" from 2018 to 2022. Project leader is prof. Zenonas Norkus. Project is funded by the European Social Fund according to the activity "Improvement of researchers' qualification by implementing world-class R&D projects' of Measure No. 09.3.3-LMT-K-712".

  16. e

    1940 United States Federal Census

    • ebroy.org
    Updated 1940
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. Year: 1940; Census Place: Upper Dublin, Montgomery, Pennsylvania; Roll: m-t0627-03585; Page: 20B; Enumeration District: 46-208 (1940). 1940 United States Federal Census [Dataset]. https://ebroy.org/profile/?person=P14
    Explore at:
    Dataset updated
    1940
    Dataset authored and provided by
    United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. Year: 1940; Census Place: Upper Dublin, Montgomery, Pennsylvania; Roll: m-t0627-03585; Page: 20B; Enumeration District: 46-208
    Area covered
    United States
    Description

    1940 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. Year: 1940; Census Place: Upper Dublin, Montgomery, Pennsylvania; Roll: m-t0627-03585; Page: 20B; Enumeration District: 46-208 - .

  17. C

    Census; population density, 1930

    • ckan.mobidatalab.eu
    Updated Jul 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OverheidNl (2023). Census; population density, 1930 [Dataset]. https://ckan.mobidatalab.eu/dataset/3852-volkstelling-bevolkingsdichtheid-1930
    Explore at:
    http://publications.europa.eu/resource/authority/file-type/atom, http://publications.europa.eu/resource/authority/file-type/jsonAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    OverheidNl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Census 1930. Density of the population of each municipality of the Netherlands, in the 9 groups of municipalities, the 11 provinces and the Netherlands as a whole according to the situation on 31 December 1930. The data are taken from Part 1, Tables VII, VIII and IX. Data available for: 1930 Status of the figures: The data in this table are final. Changes as of June 1, 2018: None, this table has been discontinued. When will new numbers come out? Not applicable anymore.

  18. S

    Census of the population 1930 - Occupational groups

    • snd.se
    html, pdf
    Updated Jan 31, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lennart Brantgärde (2014). Census of the population 1930 - Occupational groups [Dataset]. http://doi.org/10.5878/001664
    Explore at:
    pdf(180643), html(40889), pdf(180590)Available download formats
    Dataset updated
    Jan 31, 2014
    Dataset provided by
    University of Gothenburg
    Swedish National Data Service
    Authors
    Lennart Brantgärde
    License

    https://snd.se/en/search-and-order-data/using-datahttps://snd.se/en/search-and-order-data/using-data

    Area covered
    Sweden
    Dataset funded by
    Swedish Council for Research in the Humanitie and Social Sciences
    Description

    This data collection contains information about total population and total number of professionally employed within the principal occupational groups agriculture and subsidiary industry, industry and craft, commerce and shipping, public service and independent professions, domestic work, and former professionally employed, and also within subgroups of these principal groups.

  19. Population census December 31, 1930

    • ssh.datastations.nl
    • datacatalogue.cessda.eu
    doc, pdf, tiff, xls +1
    Updated Jan 1, 1998
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NIWI - KNAW; NIWI - KNAW (1998). Population census December 31, 1930 [Dataset]. http://doi.org/10.17026/dans-xwz-sypc
    Explore at:
    tiff(235127), tiff(77790), tiff(107068), tiff(176121), tiff(155010), tiff(137815), tiff(124960), tiff(81101), tiff(165765), tiff(119748), tiff(134137), tiff(109795), tiff(20545), tiff(169859), tiff(113499), tiff(110048), tiff(71715), tiff(177308), tiff(150149), tiff(183149), tiff(97887), tiff(142417), tiff(169619), tiff(217206), tiff(167163), tiff(133209), tiff(118101), tiff(172260), tiff(37781), tiff(111834), tiff(100732), tiff(180927), tiff(92788), tiff(228880), tiff(112413), tiff(168206), tiff(112452), tiff(91940), tiff(174990), xls(51200), tiff(86617), tiff(82872), tiff(121381), tiff(136285), tiff(131199), tiff(186461), tiff(149761), tiff(87247), tiff(107076), xls(4732416), tiff(104492), tiff(123334), tiff(201554), tiff(187814), tiff(178024), tiff(97388), tiff(166043), tiff(172494), xls(22016), tiff(148072), tiff(87903), tiff(145964), tiff(206850), tiff(233418), tiff(93967), tiff(182254), tiff(108329), tiff(202129), tiff(101704), tiff(162298), tiff(169692), tiff(101739), tiff(99040), pdf(12191622), tiff(245651), tiff(102420), tiff(243643), tiff(162024), tiff(229376), tiff(92299), tiff(189475), tiff(189890), tiff(115722), tiff(163229), tiff(163143), tiff(135698), tiff(106076), tiff(184386), tiff(104565), tiff(122051), tiff(103509), tiff(111142), tiff(90074), tiff(139900), tiff(169892), tiff(244918), tiff(171467), tiff(85023), tiff(172684), tiff(85264), tiff(184961), tiff(83194), tiff(219826), tiff(178604), tiff(198910), tiff(32693), tiff(285972), tiff(227860), tiff(126785), tiff(126988), tiff(154240), tiff(107055), tiff(129929), tiff(215020), tiff(176155), tiff(96704), tiff(263686), tiff(102815), tiff(213808), tiff(138048), tiff(228231), tiff(92635), tiff(102606), tiff(184048), tiff(111458), tiff(292910), tiff(118167), tiff(89589), tiff(100667), doc(95232), tiff(125903), tiff(248275), tiff(178492), tiff(54606), tiff(183551), tiff(111952), xls(125440), tiff(179583), tiff(103053), tiff(187842), tiff(171798), tiff(143139), tiff(129092), tiff(128800), tiff(31745), tiff(180933), tiff(88057), tiff(172966), tiff(74191), tiff(145334), tiff(170826), tiff(93866), tiff(124995), tiff(183270), tiff(118354), tiff(31934), tiff(83125), tiff(99534), tiff(285536), tiff(155978), tiff(122709), tiff(128093), tiff(231976), tiff(111347), tiff(102071), tiff(193689), tiff(102777), tiff(171068), tiff(202823), tiff(164533), tiff(110369), tiff(197527), tiff(126702), tiff(218495), tiff(142404), tiff(169508), tiff(200599), tiff(94095), tiff(92584), tiff(142558), tiff(106462), tiff(107503), tiff(113918), tiff(170046), tiff(125133), tiff(116739), tiff(103524), tiff(46714), tiff(104762), tiff(185258), tiff(167566), tiff(102786), tiff(124243), tiff(131840), tiff(216797), tiff(77787), tiff(80940), tiff(32771), tiff(169825), tiff(203529), tiff(81326), tiff(153978), tiff(194405), tiff(118586), tiff(187591), tiff(105044), tiff(184140), tiff(153681), tiff(177926), tiff(468016), tiff(107743), tiff(176756), tiff(105902), tiff(154483), tiff(180820), tiff(174166), tiff(120794), tiff(98135), tiff(140722), tiff(117063), tiff(179645), xls(28672), tiff(134036), tiff(94713), tiff(116611), tiff(111875), tiff(110572), tiff(177363), tiff(105889), tiff(168712), tiff(184861), tiff(98316), tiff(96919), tiff(118139), tiff(104314), tiff(176794), tiff(154087), tiff(175841), tiff(83805), tiff(102802), tiff(179940), tiff(91523), tiff(90598), tiff(149649), tiff(84260), tiff(142951), tiff(76636), tiff(232439), tiff(112915), tiff(99301), tiff(74134), tiff(214850), tiff(108854), tiff(132957), tiff(93418), tiff(111270), xls(364544), tiff(168088), tiff(188104), tiff(90920), tiff(172287), tiff(80896), tiff(166350), tiff(82276), tiff(166268), tiff(158158), tiff(126418), tiff(126901), tiff(96591), tiff(216840), tiff(6381), tiff(87137), tiff(113793), tiff(124837), tiff(145046), tiff(95469), tiff(175389), tiff(106603), tiff(142751), tiff(112326), tiff(164458), tiff(102685), tiff(124719), tiff(174360), tiff(121966), tiff(101519), tiff(227325), tiff(42111), tiff(167052), tiff(117745), tiff(190384), tiff(99663), tiff(84626), tiff(95797), tiff(173935), tiff(173862), tiff(101262), tiff(99198), tiff(78598), tiff(104296), tiff(168321), tiff(67867), tiff(30611), tiff(115964), tiff(170032), tiff(167545), tiff(72193), tiff(181315), tiff(119249), tiff(136277), tiff(235079), tiff(134168), tiff(188614), tiff(178522), tiff(163259), tiff(96126), tiff(104524), tiff(216129), tiff(105570), tiff(102392), tiff(99309), tiff(148579), tiff(220565), tiff(202634), tiff(105126), tiff(80979), tiff(41371), tiff(104530), tiff(180990), tiff(129227), tiff(124791), tiff(221717), tiff(122852), tiff(170717), tiff(220568), tiff(148336), tiff(116099), tiff(170951), tiff(81055), tiff(167765), tiff(124884), tiff(111755), tiff(79256), tiff(101037), tiff(208040), tiff(264276), xls(1558528), tiff(122248), tiff(142981), tiff(136158), xls(586752), tiff(225437), tiff(174914), tiff(130017), tiff(127681), tiff(76484), tiff(233145), pdf(31025648), tiff(145859), tiff(105518), tiff(238020), tiff(102479), tiff(228327), tiff(223897), tiff(225362), tiff(184195), tiff(109397), tiff(203764), tiff(100654), tiff(108077), tiff(96368), tiff(131440), tiff(48356), tiff(112448), tiff(104966), tiff(153715), tiff(156244), tiff(112820), tiff(150346), tiff(44406), tiff(110604), tiff(107852), tiff(196953), tiff(80086), tiff(137113), tiff(97205), tiff(143612), tiff(459596), tiff(159505), tiff(139813), tiff(150274), tiff(174425), tiff(112056), tiff(173321), tiff(97293), tiff(111138), pdf(20083794), tiff(134981), tiff(172298), tiff(97968), tiff(119051), tiff(109989), tiff(230878), pdf(12008895), tiff(114150), tiff(181541), tiff(132930), tiff(213724), tiff(104047), tiff(138502), tiff(225010), tiff(102512), tiff(81382), tiff(90522), tiff(126699), tiff(97244), tiff(182860), tiff(154319), tiff(21087), tiff(101691), tiff(79096), tiff(105841), tiff(180447), tiff(143526), tiff(136168), tiff(83909), tiff(138780), tiff(118573), tiff(119693), tiff(103835), tiff(220888), tiff(142189), tiff(109477), tiff(100837), tiff(100991), tiff(169555), tiff(220293), tiff(173751), tiff(136671), tiff(62284), tiff(146914), tiff(110482), tiff(123474), tiff(151203), tiff(172677), tiff(127690), tiff(179768), tiff(91971), tiff(171867), tiff(257133), tiff(70526), tiff(83166), tiff(167010), xls(375808), tiff(171611), tiff(107773), pdf(1267457), tiff(103451), tiff(162893), tiff(169243), tiff(146073), pdf(34712940), xls(21504), tiff(40121), tiff(128429), tiff(177988), tiff(171388), tiff(243449), tiff(103544), tiff(92490), tiff(188043), tiff(172117), xls(2264576), tiff(128157), tiff(169070), tiff(179089), tiff(168159), tiff(209811), xls(740352), tiff(99942), tiff(167652), tiff(184790), tiff(243938), tiff(207048), tiff(127915), tiff(108921), tiff(171089), tiff(101929), tiff(123682), tiff(107815), tiff(188310), tiff(79159), tiff(107944), tiff(179753), tiff(97970), tiff(91582), tiff(100412), tiff(112929), tiff(112570), tiff(203029), tiff(119681), tiff(176111), tiff(132910), tiff(180639), tiff(218020), tiff(103399), tiff(100188), tiff(109514), tiff(209920), tiff(157636), pdf(377140), tiff(97088), tiff(190762), tiff(222936), tiff(172313), tiff(154992), tiff(95423), tiff(201142), tiff(170156), tiff(185143), tiff(87876), tiff(109934), tiff(100744), tiff(220016), tiff(104393), tiff(167143), xls(390144), tiff(109875), tiff(275698), pdf(13139487), tiff(129142), tiff(130559), tiff(39684), tiff(76739), tiff(97626), tiff(107326), tiff(125173), tiff(134581), tiff(175698), pdf(1728657), tiff(84111), tiff(287291), tiff(201134), tiff(146354), tiff(154585), tiff(41686), tiff(168993), tiff(136656), tiff(213641), tiff(109726), tiff(105669), tiff(117083), tiff(130989), tiff(221594), tiff(130790), tiff(148633), tiff(178742), tiff(92698), tiff(119728), tiff(175060), tiff(163952), tiff(139942), tiff(158215), tiff(83246), tiff(111462), tiff(135687), tiff(97961), tiff(189242), tiff(126799), tiff(97923), tiff(126897), tiff(102337), tiff(117670), tiff(119530), xls(345600), tiff(94153), tiff(102821), tiff(142201), tiff(98023), tiff(119128), tiff(173600), doc(228352), tiff(100709), tiff(157327), tiff(107118), tiff(110468), tiff(177125), tiff(135679), tiff(109941), tiff(84082), tiff(53908), tiff(205405), tiff(135602), tiff(233693), tiff(177106), tiff(126013), tiff(268285), tiff(103696), tiff(102409), tiff(129756), tiff(82890), tiff(20453), tiff(101451), tiff(97418), tiff(91234), tiff(117945), tiff(4651), tiff(96386), tiff(108795), tiff(18722), tiff(106427), tiff(84664), tiff(100139), tiff(182693), tiff(119527), tiff(104022), tiff(128605), tiff(106380), tiff(167031), tiff(96396), tiff(135125), tiff(145837), tiff(170323), tiff(219855), tiff(118994), tiff(126644), tiff(99782), tiff(76591), tiff(110690), tiff(100479), tiff(176349), tiff(131406), tiff(125779), tiff(115242), tiff(156149), tiff(298739), tiff(179221), tiff(113744), tiff(182994), tiff(200814), tiff(102467), tiff(125295), tiff(164266), tiff(128218), tiff(223235), tiff(109667), tiff(184118), tiff(217562), tiff(127105), xls(49664), tiff(120913), tiff(185639), tiff(122679), tiff(125193), tiff(104139), tiff(144288), tiff(81157), tiff(197963), tiff(149116), tiff(106980), tiff(113311), tiff(161348), tiff(288481), tiff(181784), tiff(116449), tiff(226825), tiff(142343), tiff(138449), tiff(101600), tiff(129507), tiff(79442), tiff(176520), tiff(183859), tiff(159233), xls(19456), tiff(95598), pdf(200498), tiff(187800), tiff(119683), zip(597066), tiff(222106), tiff(96907), tiff(115605), tiff(142499), tiff(101052), tiff(169323), tiff(152858), tiff(109662), tiff(98940), tiff(103734), tiff(115417), tiff(80991), tiff(125313), tiff(148664), tiff(100446), tiff(116763), tiff(180151), tiff(184480), tiff(209858), tiff(148777), tiff(174361), tiff(173359), tiff(102400), tiff(81646), tiff(89593), tiff(107085), tiff(247620), tiff(101377), tiff(225158), xls(104448), tiff(119855), tiff(283578), tiff(211944), tiff(173312), tiff(103150), tiff(140583), tiff(133297), tiff(102379), tiff(290737), tiff(177427), tiff(82170), tiff(80951), tiff(168408), tiff(107777), tiff(145355), tiff(104603), tiff(106518), tiff(124827), tiff(145597), tiff(103110), tiff(110014), tiff(150906), tiff(182999), tiff(123551), tiff(95577), tiff(171965), tiff(177517), tiff(100642), tiff(172371), tiff(71269), tiff(106074), tiff(120887), tiff(169960), tiff(108972), tiff(100673), tiff(104034), tiff(113943), tiff(127855), tiff(96007), tiff(111532), tiff(98948), tiff(116481), doc(38400), tiff(38684), tiff(107657), tiff(187471), tiff(91869), tiff(81064), doc(28672), tiff(141556), tiff(248920), tiff(171584), tiff(33164), tiff(221428), tiff(204037), tiff(10163), tiff(118241), tiff(79439), tiff(173362), tiff(129586), tiff(484528), tiff(128296), tiff(131200), tiff(163443), tiff(115232), tiff(138913), tiff(136244), tiff(105375), tiff(117398), tiff(94328), tiff(174828), tiff(132144), tiff(171230), tiff(207748), tiff(107748), tiff(165786), tiff(105526), tiff(79754), tiff(182578), tiff(95015), tiff(141053), tiff(172253), tiff(186447), tiff(176779), tiff(137267), tiff(130004), tiff(94501), tiff(131150), tiff(260617), tiff(189689), xls(4206592), tiff(83601), tiff(175557), tiff(80958), tiff(97967), tiff(166582), tiff(217930), tiff(130628), tiff(10419), tiff(84234), tiff(134147), tiff(102175), tiff(101834), tiff(114056), tiff(180384), tiff(199016), tiff(225306), tiff(192808), tiff(280333), tiff(146599), tiff(245113), tiff(90200), tiff(114514), tiff(182028), tiff(176618), tiff(123619), tiff(94984), tiff(96597), tiff(128883), tiff(112235), tiff(133249), tiff(101364), tiff(283669), tiff(122718), tiff(175733), tiff(219170), tiff(146467), tiff(226531), tiff(79056), xls(40448), tiff(44137), tiff(288089), tiff(168550), tiff(173346), tiff(99117), tiff(141238), tiff(165851), tiff(95413), tiff(135669), tiff(127835), tiff(101303), tiff(110942), tiff(164510), tiff(217742), tiff(14792), tiff(235730), tiff(100558), tiff(245957), tiff(223937), tiff(126997), tiff(296883), tiff(152233), tiff(74989), tiff(106800), tiff(140608), tiff(90892), tiff(181525), tiff(176527), tiff(142255), tiff(119361), tiff(174878), tiff(102769), tiff(106503), tiff(173550), tiff(150118), pdf(353612), tiff(138098), tiff(109956), tiff(32936), tiff(173568), tiff(92409), tiff(103768), tiff(105995), tiff(103318), tiff(181049), tiff(94869), tiff(190654), pdf(4154086), tiff(161313), tiff(130518), tiff(128059), tiff(76807), tiff(124304), tiff(18079), tiff(180092), tiff(191394), tiff(83414), tiff(224745), tiff(181668), tiff(173118), tiff(172226), tiff(107928), tiff(98668), tiff(169490), tiff(123222), pdf(8023987), tiff(297226), tiff(74766), tiff(177465), tiff(179148), tiff(93313), tiff(91847), tiff(79695), tiff(35302), tiff(152517), tiff(204389), tiff(170831), tiff(103689), tiff(207549), tiff(101771), tiff(198917), tiff(143466), tiff(99779), tiff(134420), tiff(141327), tiff(90546), tiff(140005), pdf(16085312), tiff(136148), xls(759808), tiff(222776), tiff(139548), tiff(177211), tiff(109991), tiff(17340), tiff(139357), tiff(93363), tiff(78951), tiff(122631), tiff(124012), tiff(84938), tiff(130000), tiff(99676), tiff(182132), tiff(180658), tiff(139342), tiff(147321), tiff(104104), tiff(100350), tiff(174337), tiff(113185), tiff(171274), tiff(223296), tiff(173271), tiff(138022), tiff(175564), tiff(195369), tiff(103007), tiff(77678), tiff(193811), tiff(160786), tiff(288539), tiff(141629), tiff(123912), tiff(109895), xls(29184), xls(57344), tiff(137174), tiff(165753), tiff(123832), tiff(91318), tiff(125766), tiff(203325), tiff(201363), tiff(80288), tiff(106753), tiff(93647), tiff(202638), tiff(171707), tiff(98043), tiff(116788), tiff(92616), tiff(136239), tiff(197361), xls(31232), tiff(116085), tiff(221567), tiff(170327), tiff(120782), tiff(167452), tiff(178328), tiff(183274), tiff(124054), tiff(174255), tiff(109184), tiff(199189), tiff(46240), tiff(135332), tiff(98657), tiff(177298), tiff(108251), tiff(69402), tiff(113389), tiff(131584), tiff(178517), tiff(122375), tiff(110636), tiff(226335), tiff(136393), tiff(52086), tiff(178153), tiff(181909), tiff(133455), tiff(101585), tiff(143797), tiff(113775), tiff(95523), tiff(129362), tiff(24913), tiff(85563), tiff(79537), tiff(119018), tiff(133645), tiff(186977), tiff(175327), tiff(114659), tiff(112382), tiff(139290), pdf(515401), tiff(141540), tiff(68351), tiff(78127), tiff(216419), tiff(61095), tiff(102566), tiff(95939), tiff(192044), tiff(170881), tiff(176415), tiff(137834), tiff(83597), tiff(83707), tiff(104361), xls(96256), tiff(278231), tiff(218386), tiff(97594), tiff(121097), tiff(144327), tiff(171084), tiff(204020), tiff(200894), tiff(27125), tiff(137431), tiff(104025), tiff(238805), tiff(108324), tiff(82963), tiff(173073), tiff(180916), tiff(140745), tiff(140282), xls(34304), tiff(224055), tiff(147222), tiff(54884), tiff(221101), tiff(114509), tiff(73330), tiff(101398), tiff(122009), tiff(77926), tiff(180802), tiff(190047), tiff(175973), tiff(69003), tiff(96540), tiff(202298), tiff(182168), tiff(171895), tiff(100039), tiff(113523), tiff(80682), tiff(177555), tiff(187332), tiff(113236), tiff(141571), tiff(151871), tiff(81291), tiff(170939), tiff(108286), tiff(84502), tiff(109319), tiff(164936), xls(55296), tiff(256420), tiff(139554), tiff(281891), tiff(175341), tiff(93954), tiff(112572), tiff(208071), tiff(89630), tiff(93155), tiff(106372), tiff(469908), tiff(111646), tiff(69602), tiff(138818), tiff(80959), tiff(140016), tiff(210779), tiff(101686), tiff(38904), tiff(216302), tiff(136280), tiff(102481), tiff(108408), tiff(138850), tiff(102759), tiff(81757), tiff(160789), tiff(226609), tiff(135317), tiff(135745), tiff(133039), tiff(129914), tiff(22904), tiff(144925), tiff(102044), tiff(177000), tiff(122673), tiff(82558), tiff(165195), tiff(132268), tiff(170354), tiff(108409), tiff(100567), tiff(130423), tiff(103533), tiff(146562), xls(216064), tiff(174717), tiff(274963), xls(18432), tiff(213860), tiff(100179), tiff(105275), tiff(101439), tiff(107710), tiff(40419), tiff(101943), tiff(173609), tiff(187331), tiff(177614), tiff(454608), tiff(169593), tiff(109836), tiff(113453), tiff(34994), tiff(135781), tiff(109037), tiff(186252), tiff(200401), tiff(98383), tiff(113224), tiff(215436), tiff(185991), tiff(115685), tiff(178637), xls(41472), tiff(94921), tiff(185469), tiff(210527), tiff(179107), tiff(48826), tiff(177658), tiff(134383), tiff(169074), tiff(108690), tiff(136560), tiff(165071), tiff(103747), tiff(187156), tiff(125537), tiff(43477), tiff(162591), tiff(103206), tiff(34668), tiff(98260), tiff(117917), tiff(182588), tiff(241676), tiff(95391), tiff(172170), tiff(153863), tiff(96201), tiff(282493), tiff(167506), tiff(114869), tiff(95803), tiff(128217), tiff(147750), tiff(176097), tiff(31116), tiff(174404), tiff(172484), tiff(97838), tiff(205458), tiff(102317), tiff(153104), tiff(158344), tiff(141133), tiff(178215), tiff(122694), tiff(169627), tiff(92906), xls(80384), tiff(114813), tiff(125045), tiff(88543), tiff(106031), tiff(202172), tiff(96877), tiff(198853), tiff(139940), tiff(138155), tiff(136537), tiff(96603), tiff(120270), tiff(119022), tiff(129069), tiff(118867), tiff(295259), tiff(96665)Available download formats
    Dataset updated
    Jan 1, 1998
    Dataset provided by
    Data Archiving and Networked Services
    Authors
    NIWI - KNAW; NIWI - KNAW
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is based on two separate censuses of the Netherlands of 1920, population census (7 vols) and occupational census (3 vols).Content: images of the publication, pdf files of the text sections and excel files with data entered from the published tables.

  20. e

    Census; residents homes to rooms,departures and bedst., 1930

    • data.europa.eu
    atom feed, json
    Updated Mar 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Census; residents homes to rooms,departures and bedst., 1930 [Dataset]. https://data.europa.eu/data/datasets/3866-volkstelling-bewoners-woningen-naar-vertrekken-vertrek-en-bedst-1930
    Explore at:
    atom feed, jsonAvailable download formats
    Dataset updated
    Mar 14, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The 1930 census; housing statistics. Inhabited dwellings divided into rooms and to residents per departure due to the presence of bed cities. The data are derived from Part 4A, Tables I and II. Data available for:1930

    Status of the figures: The data in this table are final. Changes as of 4 June 2018: None, this table has been discontinued.

    When are new figures coming?

    No longer applicable.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stanford Center for Population Health Sciences (2020). Historic US census - 1930 [Dataset]. http://doi.org/10.57761/6e5q-rh85
Organization logo

Historic US census - 1930

Explore at:
sas, spss, avro, parquet, csv, stata, application/jsonl, arrowAvailable download formats
Dataset updated
Jan 10, 2020
Dataset provided by
Redivis Inc.
Authors
Stanford Center for Population Health Sciences
Time period covered
Jan 1, 1930 - Dec 31, 1930
Area covered
United States
Description

Abstract

The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

Before Manuscript Submission

All manuscripts (and other items you'd like to publish) must be submitted to

phsdatacore@stanford.edu for approval prior to journal submission.

We will check your cell sizes and citations.

For more information about how to cite PHS and PHS datasets, please visit:

https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

Documentation

This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:

IPUMS 1930 households: This dataset includes all households from the 1930 US census.

IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.

IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

Section 2

Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

Notes

  • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.

  • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.

  • Coded variables derived from string variables are still in progress. These variables include: occupation and industry.

  • Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.

  • Most inconsistent information was not edite

Search
Clear search
Close search
Google apps
Main menu