The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite
1930 United States Federal Census contains records from Swanzey, Cheshire, New Hampshire, USA by Census Place: Swanzey, Cheshire, New Hampshire; Page: 7B; Enumeration District: 0029; FHL microfilm: 2341034 - .
This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
1930 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by United States of America, Bureau of the Census. Fifteenth Census of the United States, 1930. Washington, D.C.: National Archives and Records Administration, 1930. T626, 2,667 rolls. Year: 1930; Census Place: Upper Dublin, Montgomery, Pennsylvania; Page: 8A; Enumeration District: 0143; FHL microfilm: 2341819 - .
This dataset includes all individuals from the 1930 US census.
This dataset includes all households from the 1930 US census.
1930 United States Federal Census contains records from Montpelier, Washington, Vermont, USA by Ancestry.com. 1930 United States Federal Census [database on-line]. Provo, UT, USA: Ancestry.com Operations Inc, 2002.; Year: 1930; Census Place: Montpelier, Washington, Vermont; Page: 11B; Enumeration District: 0023; FHL microfilm: 2342165; Original data: United States of America, Bureau of the Census. Fifteenth Census of the United States, 1930. Washington, D.C.: National Archives and Records Administration, 1930. T626, 2,667 rolls. - .
This crosswalk consists of individuals matched between the 1860 and 1930 complete-count US Censuses. Within the crosswalk, users have the option to select the linking method with which these matches were created. This version of the crosswalk contains links made by the ABE-exact (conservative and standard) method, the ABE-NYSIIS (conservative and standard) method and the ABE-NYSIIS (conservative and standard) method where race is used as a matching variable. For any chosen method, users can merge into this crosswalk a wide set of individual- and household-level variables provided publicly by IPUMS, thereby creating a historical longitudinal dataset for analysis.
This crosswalk consists of individuals matched between the 1920 and 1930 complete-count US Censuses. Within the crosswalk, users have the option to select the linking method with which these matches were created. This version of the crosswalk contains links made by the ABE-exact (conservative and standard) method, the ABE-NYSIIS (conservative and standard) method and the ABE-NYSIIS (conservative and standard) method where race is used as a matching variable. For any chosen method, users can merge into this crosswalk a wide set of individual- and household-level variables provided publicly by IPUMS, thereby creating a historical longitudinal dataset for analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Veterans’ Grandchildren Mortality Plus sample consists of the records of more than 35,700 total grandchildrenboth male and female in nearly equal numbers,about 28,000 of which survived to age 45,who were born after the war to 16,791 children of 2,825 veterans,and contains an oversample of ex-POW veterans.The primary purpose of the project was to explore how grandfathers’ trauma affects the longevity and overweight of descendants. The dataset contains birth and death dates of grandchildren, census information on their parents' household, select socioeconomic and education information from the 1930 and 1940 census, and height and weight information from WWII draft cards for the grandsons. This multigenerational dataset can be used for researching the intergenerational transmission of longevity, overweight and socioeconomic status and the sex-specific pathways of this transmission and for testing mechanical linkage algorithms. Researchers built on a previously collected NIA-funded project containing census and death information of children of ex-POW and non-POW veterans (“Early Indicators, Intergenerational Processes, and Aging,” NIA grant P01AG10120, PI: Costa). The Veterans’ Grandchildren Mortality Plus data set contains the newly collected records of the veterans’ grandchildren, as well as the previously collected data of the veterans and their children.
Block-level census coverage of early Central Phoenix for 1920, 1930, and 1940, including population, race/ethnicity, household ownership and rentership, and temporary residency. This dataset was designed for use in combination with parcel-level land-use data derived from Sanborn Fire Insurance Maps to assess environmental justice issues in Phoenix’s early 20th Century development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PLURAL (Place-level urban-rural indices) is a framework to create continuous classifications of "rurality" or "urbanness" based on the spatial configuration of populated places. PLURAL makes use of the concept of "remoteness" to characterize the level of spatial isolation of a populated place with respect to its neighbors. There are two implementations of PLURAL, including (a) PLURAL-1, based on distances to the nearest places of user-specified population classes, and (b) PLURAL-2, based on neighborhood characterization derived from spatial networks. PLURAL requires simplistic input data, i.e., the coordinates (x,y) and population p of populated places (villages, towns, cities) in a given point in time. Due to its simplistic input, the PLURAL rural-urban classification scheme can be applied to historical data, as well as to data from data-scarce settings. Using the PLURAL framework, we created place-level rural-urban indices for the conterminous United States from 1930 to 2018. Rural-urban classifications are essential for analyzing geographic, demographic, environmental, and social processes across the rural-urban continuum. Most existing classifications are, however, only available at relatively aggregated spatial scales, such as at the county scale in the United States. The absence of rurality or urbanness measures at high spatial resolution poses significant problems when the process of interest is highly localized, as with the incorporation of rural towns and villages into encroaching metropolitan areas. Moreover, existing rural-urban classifications are often inconsistent over time, or require complex, multi-source input data (e.g., remote sensing observations or road network data), thus, prohibiting the longitudinal analysis of rural-urban dynamics. We developed a set of distance- and spatial-network-based methods for consistently estimating the remoteness and rurality of places at fine spatial resolution, over long periods of time. Based on these methods, we constructed indices of urbanness for 30,000 places in the United States from 1930 to 2018. We call these indices the place-level urban-rural index (PLURAL), enabling long-term, fine-grained analyses of urban and rural change in the United States. The method paper has been peer-reviewed and is published in "Landscape and Urban Planning". The PLURAL indices from 1930 to 2018 are available as CSV files, and as point-based geospatial vector data (.SHP). Moreover, we provide animated GIF files illustrating the spatio-temporal variation of the different variants of the PLURAL indices, illustrating the dynamics of the rural-urban continuum in the United States from 1930 to 2018. Apply the PLURAL rural-urban classification to your own data: Python code is fully open source and available at https://github.com/johannesuhl/plural. Data sources: Place-level population counts (1980-2010) and place locations 1930 - 2018 were obtained from IPUMS NHGIS, (University of Minnesota, www.nhgis.org; Manson et al. 2022). Place-level population counts 1930-1970 were digitized from historical census records (U.S. Census Bureau 1942, 1964). References: Uhl, J.H., Hunter, L.M., Leyk, S., Connor, D.S., Nieves, J.J., Hester, C., Talbot, C. and Gutmann, M., 2023. Place-level urban–rural indices for the United States from 1930 to 2018. Landscape and Urban Planning, 236, p.104762. DOI: https://doi.org/10.1016/j.landurbplan.2023.104762 Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 16.0 [dataset]. Minneapolis, MN: IPUMS. 2021. http://doi.org/10.18128/D050.V16.0 U.S. Census Bureau (1942). U.S. Census of Population: 1940. Vol. I, Number of Inhabitants. U.S. Government Printing Office, Washington, D.C. U.S. Census Bureau (1964). U.S. Census of Population: 1960. Vol. I, Characteristics of the Population. Part I, United States Summary. U.S. Government Printing Office, Washington, D.C.
For more than 150 years, the U.S. Department of Commerce, Bureau of the Census, conducted the census of agriculture. However, the 2002 Appropriations Act transferred the responsibility from the Bureau of the Census to the U.S. Department of Agriculture (USDA), National Agricultural Statistics Service (NASS). The 2007 Census of Agriculture for the U.S. Virgin Islands is the second census in the U.S. Virgin Islands conducted by NASS. The census of agriculture is taken to obtain agricultural statistics for each county, State (including territories and protectorates), and the Nation. The first U.S. agricultural census data were collected in 1840 as a part of the sixth decennial census. From 1840 to 1920, an agricultural census was taken as a part of each decennial census. Since 1920, a separate national agricultural census has been taken every 5 years. The 2007 census is the 14th census of agriculture of the U.S. Virgin Islands. The first, taken in 1920, was a special census authorized by the Secretary of Commerce. The next agriculture census was taken in 1930 in conjunction with the decennial census, a practice that continued every 10 years through 1960. The 1964 Census of Agriculture was the first quinquennial (5-year) census to be taken in the U.S. Virgin Islands. In 1976, Congress authorized the census of agriculture to be taken for 1978 and 1982 to adjust the data-reference year to coincide with the 1982 Economic Censuses covering manufacturing, mining, construction, retail trade, wholesale trade, service industries, and selected transportation activities. After 1982, the agriculture census reverted to a 5-year cycle. Data in this publication are for the calendar year 2007, and inventory data reflect what was on hand on December 31, 2007. This is the same reference period used in the 2002 census. Prior to the 2002 census, data was collected in the summer for the previous 12 months, with inventory items counted as what was on hand as of July 1 of the year the data collection was done.
Objectives: The census of agriculture is the leading source of statistics about the U.S. Virgin Islands’s agricultural production and the only source of consistent, comparable data at the island level. Census statistics are used to measure agricultural production and to identify trends in an ever changing agricultural sector. Many local programs use census data as a benchmark for designing and evaluating surveys. Private industry uses census statistics to provide a more effective production and distribution system for the agricultural community.
National coverage
Households
The statistical unit was a farm, defined as "any place from which USD 500 or more of agricultural products were produced and sold, or normally would had been sold, during the calendar year 2007". According to the census definition, a farm is essentially an operating unit, not an ownership tract. All land operated or managed by one person or partnership represents one farm. In the case of tenants, the land assigned to each tenant is considered a separate farm, even though the landlord may consider the entire landholding to be one unit rather than several separate units.
Census/enumeration data [cen]
(a) Method of Enumeration As in the previous censuses of the U.S. Virgin Islands, a direct enumeration procedure was used in the 2007 Census of Agriculture. Enumeration was based on a list of farm operators compiled by the U.S. Virgin Islands Department of Agriculture. This list was compiled with the help of the USDA Farm Services Agency located in St. Croix. The statistics in this report were collected from farm operators beginning in January of 2003. Each enumerator was assigned a list of individuals or farm operations from a master enumeration list. The enumerators contacted persons or operations on their list and completed a census report form for all farm operations. If the person on the list was not operating a farm, the enumerator recorded whether the land had been sold or rented to someone else and was still being used for agriculture. If land was sold or rented out, the enumerator got the name of the new operator and contacted that person to ensure that he or she was included in the census.
(b) Frame The census frame consisted of a list of farm operators compiled by the U.S. Virgin Islands DA. This list was compiled with the help of the USDA Farm Services Agency, located in St. Croix.
(c) Complete and/or sample enumeration methods The census was a complete enumeration of all farm operators registered in the list compiled by the United States of America in the CA 2007.
Face-to-face [f2f]
The questionnaire (report form) for the CA 2007 was prepared by NASS, in cooperation with the DA of the U.S. Virgin Islands. Only one questionnaire was used for data collection covering topics on:
The questionnaire of the 2007 CA covered 12 of the 16 core items' recommended for the WCA 2010 round.
DATA PROCESSING The processing of the 2007 Census of Agriculture for the U.S. Virgin Islands was done in St. Croix. Each report form was reviewed and coded prior to data keying. Report forms not meeting the census farm definition were voided. The remaining report forms were examined for clarity and completeness. Reporting errors in units of measures, illegible entries, and misplaced entries were corrected. After all the report forms had been reviewed and coded, the data were keyed and subjected to a thorough computer edit. The edit performed comprehensive checks for consistency and reasonableness, corrected erroneous or inconsistent data, supplied missing data based on similar farms, and assigned farm classification codes necessary for tabulating the data. All substantial changes to the data generated by the computer edits were reviewed and verified by analysts. Inconsistencies identified, but not corrected by the computer, were reviewed, corrected, and keyed to a correction file. The corrected data were then tabulated by the computer and reviewed by analysts. Prior to publication, tabulated totals were reviewed by analysts to identify inconsistencies and potential coverage problems. Comparisons were made with previous census data, as well as other available data. The computer system provided the capability to review up-to-date tallies of all selected data items for various sets of criteria which included, but were not limited to, geographic levels, farm types, and sales levels. Data were examined for each set of criteria and any inconsistencies or potential problems were then researched by examining individual data records contributing to the tabulated total. W hen necessary, data inconsistencies were resolved by making corrections to individual data records.
The accuracy of these tabulated data is determined by the joint effects of the various nonsampling errors. No direct measures of these effects have been obtained; however, precautionary steps were taken in all phases of data collection, processing, and tabulation of the data in an effort to minimize the effects of nonsampling errors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nepal Population Census data was reported at 29,164,578.000 Person in 2021. This records an increase from the previous number of 26,494,504.000 Person for 2011. Nepal Population Census data is updated yearly, averaging 10,484,489.500 Person from Dec 1911 (Median) to 2021, with 12 observations. The data reached an all-time high of 29,164,578.000 Person in 2021 and a record low of 5,532,574.000 Person in 1930. Nepal Population Census data remains active status in CEIC and is reported by Central Bureau of Statistics. The data is categorized under Global Database’s Nepal – Table NP.G001: Population Census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Population Census: Female: Age 65 to 69 Years data was reported at 4,984,205.000 Person in 2015. This records an increase from the previous number of 4,288,399.000 Person for 2010. Japan Population Census: Female: Age 65 to 69 Years data is updated yearly, averaging 1,476,220.500 Person from Dec 1920 (Median) to 2015, with 20 observations. The data reached an all-time high of 4,984,205.000 Person in 2015 and a record low of 678,637.000 Person in 1930. Japan Population Census: Female: Age 65 to 69 Years data remains active status in CEIC and is reported by Statistical Bureau. The data is categorized under Global Database’s Japan – Table JP.G002: Population: Annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Population Census: Age 65 to 69 Years data was reported at 9,643,867.000 Person in 2015. This records an increase from the previous number of 8,210,173.000 Person for 2010. Japan Population Census: Age 65 to 69 Years data is updated yearly, averaging 2,793,526.000 Person from Dec 1920 (Median) to 2015, with 20 observations. The data reached an all-time high of 9,643,867.000 Person in 2015 and a record low of 1,255,830.000 Person in 1930. Japan Population Census: Age 65 to 69 Years data remains active status in CEIC and is reported by Statistical Bureau. The data is categorized under Global Database’s Japan – Table JP.G002: Population: Annual.
The unique multigenerational data base, Uppsala Birth Cohort Multigeneration Study (UBCoS), was established in 2004 by combining existing data on a representative and well-defined cohort of 14,192 males and females born in Uppsala from 1915-1929 with information on descendants of the original cohort members obtained from routine data registers.
To date, the study has been further developed by additional data collection in school archives and records from Census 1930 and the period of follow-up extended till end of year 2010. Further data collection is currently ongoing.
The study is unique in investigating intergenerational effects as "forward in time" processes, starting at the beginning of the last century (i.e. well before any of the routine registers were in place). Intergenerational associations can be currently investigated in more than 140,000 study subjects from families spanning up to five generations, including the 14,192 original cohort members, their 22,559 children, 38,771 grandchildren and 25,471 great grandchildren.
The main research objectives are to: (i) Address questions of the extent to which and the mechanisms whereby social advantage and disadvantage are transmitted from one generation to the next, giving rise to continuity in social disadvantage both over the life cycle and across generations. (ii) Explore how early social and biological factors are transmitted from the parent generation to offspring generation(s). (iii) Integrate the understanding of broader social mechanisms with the understanding of disease specific aetiology to answer the question of how, and to what extent, health inequalities are reproduced into each new generation.
Purpose:
The aim of the study is to investigate life course and intergenerational determinants of social inequalities in health.
Number of participants: 14,192 original cohort together with >140,000 family members.
1920 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by Fourteenth Census of the United States, 1920. (NARA microfilm publication T625, 2076 rolls). Records of the Bureau of the Census, Record Group 29. National Archives, Washington, D.C. Year: 1920; Census Place: Philadelphia Ward 42, Philadelphia, Pennsylvania; Roll: T625_1643; Page: 13A; Enumeration District: 1564 - .
【対象期間】昭和5年10月1日国勢調査【注】【計数出所】内閣統計局調査 / PERIOD: Population census on Oct. 1, 1930. SOURCE: [Survey by the Statistics Bureau, Imperial Cabinet]. / 公的統計: 集計データ、統計表 / official statistics: aggregate data / 集計 / Aggregation / Keywords: 人口センサス, 統計, 経済, Statistics, Economics, Censuses, 人口, Population【リソース】Fulltext
【対象期間】昭和5年10月1日国勢調査【注】【計数出所】内閣統計局調査 / PERIOD: Population census on Oct. 1, 1930. SOURCE: [Survey by the Statistics Bureau, Imperial Cabinet]. / 公的統計: 集計データ、統計表 / official statistics: aggregate data / 集計 / Aggregation / Keywords: 人口センサス, 家族生活と結婚, 統計, 経済, Statistics, Economics, Censuses, Family life and marriage, 人口, 世帯, Population, Households【リソース】Fulltext
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite