From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.
A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 2394 series, with data for years 1991 -1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 3;Income adequacy quintile 2 ...), Age (14 items: At 25 years; At 30 years; At 35 years; At 40 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Probability of survival; Low 95% confidence interval; life expectancy; High 95% confidence interval; life expectancy ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Life Expectancy (WHO)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/kumarajarshi/life-expectancy-who on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Although there have been lot of studies undertaken in the past on factors affecting life expectancy considering demographic variables, income composition and mortality rates. It was found that affect of immunization and human development index was not taken into account in the past. Also, some of the past research was done considering multiple linear regression based on data set of one year for all the countries. Hence, this gives motivation to resolve both the factors stated previously by formulating a regression model based on mixed effects model and multiple linear regression while considering data from a period of 2000 to 2015 for all the countries. Important immunization like Hepatitis B, Polio and Diphtheria will also be considered. In a nutshell, this study will focus on immunization factors, mortality factors, economic factors, social factors and other health related factors as well. Since the observations this dataset are based on different countries, it will be easier for a country to determine the predicting factor which is contributing to lower value of life expectancy. This will help in suggesting a country which area should be given importance in order to efficiently improve the life expectancy of its population.
The project relies on accuracy of data. The Global Health Observatory (GHO) data repository under World Health Organization (WHO) keeps track of the health status as well as many other related factors for all countries The data-sets are made available to public for the purpose of health data analysis. The data-set related to life expectancy, health factors for 193 countries has been collected from the same WHO data repository website and its corresponding economic data was collected from United Nation website. Among all categories of health-related factors only those critical factors were chosen which are more representative. It has been observed that in the past 15 years , there has been a huge development in health sector resulting in improvement of human mortality rates especially in the developing nations in comparison to the past 30 years. Therefore, in this project we have considered data from year 2000-2015 for 193 countries for further analysis. The individual data files have been merged together into a single data-set. On initial visual inspection of the data showed some missing values. As the data-sets were from WHO, we found no evident errors. Missing data was handled in R software by using Missmap command. The result indicated that most of the missing data was for population, Hepatitis B and GDP. The missing data were from less known countries like Vanuatu, Tonga, Togo, Cabo Verde etc. Finding all data for these countries was difficult and hence, it was decided that we exclude these countries from the final model data-set. The final merged file(final dataset) consists of 22 Columns and 2938 rows which meant 20 predicting variables. All predicting variables was then divided into several broad categories:Immunization related factors, Mortality factors, Economical factors and Social factors.
The data was collected from WHO and United Nations website with the help of Deeksha Russell and Duan Wang.
The data-set aims to answer the following key questions: 1. Does various predicting factors which has been chosen initially really affect the Life expectancy? What are the predicting variables actually affecting the life expectancy? 2. Should a country having a lower life expectancy value(<65) increase its healthcare expenditure in order to improve its average lifespan? 3. How does Infant and Adult mortality rates affect life expectancy? 4. Does Life Expectancy has positive or negative correlation with eating habits, lifestyle, exercise, smoking, drinking alcohol etc. 5. What is the impact of schooling on the lifespan of humans? 6. Does Life Expectancy have positive or negative relationship with drinking alcohol? 7. Do densely populated countries tend to have lower life expectancy? 8. What is the impact of Immunization coverage on life Expectancy?
--- Original source retains full ownership of the source dataset ---
In 2024, the average life expectancy for those born in more developed countries was 76 years for men and 82 years for women. On the other hand, the respective numbers for men and women born in the least developed countries were 64 and 69 years. Improved health care has lead to higher life expectancy Life expectancy is the measure of how long a person is expected to live. Life expectancy varies worldwide and involves many factors such as diet, gender, and environment. As medical care has improved over the years, life expectancy has increased worldwide. Introduction to health care such as vaccines has significantly improved the lives of millions of people worldwide. The average worldwide life expectancy at birth has steadily increased since 2007, but dropped during the COVID-19 pandemic in 2020 and 2021. Life expectancy worldwide More developed countries tend to have higher life expectancies, for a multitude of reasons. Health care infrastructure and quality of life tend to be higher in more developed countries, as is access to clean water and food. Africa was the continent that had the lowest life expectancy for both men and women in 2023, while Oceania had the highest for men and Europe and Oceania had the highest for women.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Death Rate & Life-Expectancy Over The Years’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/death-rate-and-life-expectancye on 13 February 2022.
--- Dataset description provided by original source is as follows ---
This storyboard of U.S. mortality trends over the past 113 years highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex; neonatal mortality and infant mortality rates by race; childhood mortality rates by age; and trends in age-adjusted death rates for five selected major causes of death.
- Age-adjusted death rates (deaths per 100,000) are based on the 2000 U.S. standard population.
- Populations used for computing death rates for 2011–2013 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010.
- Rates for census years are based on populations enumerated in the corresponding censuses.
- Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.
http://i.imgur.com/9pc2V4v.png" alt="Imgur">
National Center for Health Statistics Data Visualization of Deaths in the United States, 1900–2013 (6/01/15)Attribution: Centers for Disease Control and Prevention.
This dataset was created by Health and contains around 2000 samples along with Sex, Race, technical information and other features such as: - Year - Measure Names - and more.
- Analyze Mortality in relation to Average Life Expectancy
- Study the influence of Sex on Race
- More datasets
If you use this dataset in your research, please credit Health
--- Original source retains full ownership of the source dataset ---
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Effect of suicide rates on life expectancy dataset
Abstract
In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.
Data
The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.
LICENSE
THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).
[1] https://www.kaggle.com/szamil/who-suicide-statistics
[2] https://www.kaggle.com/kumarajarshi/life-expectancy-who
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mean number of years that a person can expect to live at birth if subjected to current mortality conditions throughout the rest of their life.
In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.
The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.
This dataset was created on 2020-01-10 18:53:00.508
by merging multiple datasets together. The source datasets for this version were:
Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile
Commuting Zone Characteristics: CZ-level characteristics
Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.
This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.
Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths
This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.
This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.
Two variables constructed by the Cen
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘NCHS - Death rates and life expectancy at birth’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c2b9cde2-8de2-4643-8681-d6f829849ef5 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
--- Original source retains full ownership of the source dataset ---
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 1408 series, with data for years 2001 - 2001 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (11 items: Canada; Newfoundland and Labrador; Nova Scotia; Prince Edward Island ...), Age group (2 items: At birth; At age 65 ...), Sex (2 items: Males; Females ...), Income group (4 items: All income groups; Income group; tercile 1 (lowest);Income group; tercile 3 (highest);Income group; tercile 2 (middle) ...), Characteristics (8 items: Health-adjusted life expectancy; Low 95% confidence interval; health-adjusted life expectancy; Coefficient of variation for health-adjusted life expectancy; High 95% confidence interval; health-adjusted life expectancy ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays life expectancy at birth (year) by ISO 2 country code using the aggregation average, weighted by population in Africa. The data is about countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about countries per year in Ireland. It has 64 rows. It features 4 columns: country, ISO 2 country code, and life expectancy at birth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 2: Table 2. Life Expectancy and 95% Confidence Intervals for the Total Population (Males and Females) by Racial Group at Four Time Points.
This dataset includes estimates of U.S. life expectancy at birth by state and census tract for the period 2010-2015 (1). Estimates were produced for 65,662 census tracts, covering the District of Columbia (D.C.) and all states, excluding Maine and Wisconsin, representing 88.7% of all U.S. census tracts (see notes). These estimates are the result of the collaborative project, “U.S. Small-area Life Expectancy Estimates Project (USALEEP),” between the National Center for Health Statistics (NCHS), the National Association for Public Health Statistics and Information Systems (NAPHSIS), and the Robert Wood Johnson Foundation (RWJF) (2).
This statistic shows the average life expectancy in Europe for those born in 2024, by gender and region. The average life expectancy in Western Europe was 79 years for males and 84 years for females in 2024. Additional information on European life expectancy The difference in life expectancy seen between men and women across all European regions is in line with the global trends of women outliving men, on average. The average life expectancy at birth worldwide by income group shows that the gender life expectancy gap is not only a consistent trend across countries, but also income groups. Moreover, the higher life expectancy for those in high income groups may help to explain the lower average life expectancy for those born in Eastern Europe where average incomes are generally lower than other European regions. Although income and length of life are not directly correlated, higher income individuals are generally able to afford access to superior nutrition and healthcare as well as having leisure time for exercise. That said, current trends in the increases in life expectancy worldwide by country between 1970 and 2017 suggest economic growth will lead to larger increases in life expectancy. Those increases are less likely to occur to such a degree in the more developed regions of Europe where Italy, Spain, France, Switzerland, Iceland and Austria all rank in the top 20 countries with the highest life expectancy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Countries Life Expectancy’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/brendan45774/countries-life-expectancy on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Average age people in a country lived.
15 different countries with over 217 years
Photo by Andrew Butler on Unsplash
--- Original source retains full ownership of the source dataset ---
From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.