Facebook
TwitterIn 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.
Facebook
TwitterMonaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Description
This Dataset contains details of World Population by country. According to the worldometer, the current population of the world is 8.2 billion people. Highest populated country is India followed by China and USA.
Attribute Information
Acknowledgements
https://www.worldometers.info/world-population/population-by-country/
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
**🌍 World Countries Dataset This World Countries Dataset contains detailed information about countries across the globe, offering insights into their geographic, demographic, and economic characteristics.
It includes various features such as population, area, GDP, languages, and regional classifications. This dataset is ideal for projects related to data visualization, statistical analysis, geographical studies, or machine learning applications such as clustering or classification of countries.
This dataset was manually compiled/collected from reliable open data sources (e.g., Wikipedia, World Bank, or other governmental datasets).
**🔍 Sample Questions Explored Using Python: - Q. 1) Which countries have the highest and lowest population? - Q. 2) What is the average area (in sq. km) of countries in each region? - Q. 3) Which countries have more than 100 million population and GDP above $1 trillion? - Q. 4) Which languages are most commonly spoken across countries? - Q. 5) Show a bar graph comparing GDPs of G7 nations. - Q. 6) How many countries are there in each continent or region? - Q. 7) Which countries have both a high population density and low GDP per capita? - Q. 8) Create a world map visualization of population or GDP distribution. - Q. 9) What are the top 10 most densely populated countries? - Q. 10) How many landlocked countries are there in the world?
**🧾 Features / Columns in the Dataset: - Country: The name of the country (e.g., "Pakistan", "France").
Capital: The capital city of the country.
Region: Broad geographical region (e.g., "Asia", "Europe").
Subregion: More specific geographical grouping (e.g., "Southern Asia").
Population: Total population of the country.
Area (sq. km): Total land area in square kilometers.
Population Density: Number of people per square kilometer.
GDP (USD): Gross Domestic Product (in U.S. dollars).
GDP per Capita: GDP divided by the population.
Official Languages: Officially recognized language(s) spoken.
Currency: Name of the currency used.
Timezones: Timezones in which the country falls.
Borders: List of bordering countries (if any).
Landlocked: Whether the country is landlocked (Yes/No).
Latitude / Longitude: Coordinates for geographical plotting.
Facebook
TwitterThis statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Explore population projections for China on this dataset webpage. Get valuable insights into the future demographic trends of one of the world's most populous countries.
Population, China, projections ChinaFollow data.kapsarc.org for timely data to advance energy economics research..Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimatesSource: (1) United Nations Population Division. World Population Prospects: 2019 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.
Facebook
TwitterNigeria has the largest population in Africa. As of 2025, the country counted over 237.5 million individuals, whereas Ethiopia, which ranked second, has around 135.5 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 118.4 million people. In terms of inhabitants per square kilometer, Nigeria only ranked seventh, while Mauritius had the highest population density on the whole African continent in 2023. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Chad, South Sudan, Somalia, and the Central African Republic, the population increase peaks at over 3.4 percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. African cities are also growing at large rates. Indeed, the continent has three megacities and is expected to add four more by 2050. Furthermore, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria, by 2035.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterThe increased world population is among the fierce problems the world is facing right now and it will get uncontrolled in the coming future if proper steps for its betterment were not taken immediately. This world has observed the fastest growth during the 20th century. In the 1950s world population was 2.7 billion, By the end of this year it will cross 8 billion. This dataset is uploaded with the assumption to use your Data Science, Machine learning, and Predictive analytics skills and answer the following questions. 1. Which countries have the highest growth rate. 2. What are the densely populated countries in the world. 3. Keeping in view all the variables in mind which countries should take serious steps to control their population.
Facebook
TwitterIn 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
Data Source: This dataset was compiled from multiple data sources
If this was helpful, a vote is appreciated ❤️ Thank you 🙂
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
It is perhaps unsurprising that the majority of the most populous cities in the world are in the two most populated countries in the world, China and India. Among these are Shanghai and Beijing, with populations of 25 and 22 million respectively, Delhi (27 million), and Mumbai (over 21.5 million).
Tokyo is the largest city in the world if the entire Tokyo metro area is included, with a total of more than 38 million residents. Another Japanese city, Osaka, also has a very large population of almost 20.5 million. There are also a number of non-Asian cities with high populations, including Mexico City (over 21 million), Cairo (almost 19.5 million), and Buenos Aires (almost 15.5 million).
European cities, Istanbul is the most populous, with more than 14.5 million residents. This is followed by Moscow (over 12 million) and Paris (11 million including the Paris metro area). These cities are of course also culturally significant and between them welcome millions of tourists each year.
There are quite a number of popular and culturally rich cities that have smaller populations, often making for higher living standards for their residents. Barcelona, Sydney, Berlin and Vancouver all have fewer than five million residents, but are very popular choices for city living. There are also some comparatively very small cities with big cultural, historical or political reputations, such as Sarajevo (314,000), Edinburgh (502,000), and Venice (631,000), demonstrating that small cities can be highly significant regardless of the size of their population.
Facebook
TwitterOffice for National Statistics’ national and subnational mid-year population estimates for England and Wales for a selection of administrative and census areas by age (in 5 year age brackets) for 2012 to 2020. The data is source is from ONS Population Estimates. Find out more about this dataset here.This data is issued at (BGC) Generalised (20m) boundary type for:Country,Region,Upper Tier Local Authority (2021),Lower Tier Local Authority (2021),Middle Super Output Area (2011), andLower Super Output Area (2011).If you require the data at full resolution boundaries, or if you are interested in the range of statistical data that Esri UK make available in ArcGIS Online please enquire at content@esriuk.com.The Office for National Statistics (ONS) produces annual estimates of the resident population of England and Wales at 30 June every year. The most authoritative population estimates come from the census, which takes place every 10 years in the UK. Population estimates from a census are updated each year to produce mid-year population estimates (MYEs), which are broken down by local authority, sex and age. More detailed information on the methods used to generate the mid-year population estimates can be found here.For further information on the usefulness of the data and guidance on small area geographies please see here.The currency of this data is 2021.MethodologyThe total and 5-year breakdown population counts are reproduced directly from the source data. The age range estimates have been calculated from the published estimates by single year of age. The percentages are calculated using the gender specific (total, female or male) total population count as a denominator except in the case of the male and female total population where the total population is used to give female and male proportions.This dataset will be updated annually, in two releases.Creator: Office for National Statistics. Aggregated age groupings and percentages calculated by Esri UK._The data services available from this page are derived from the National Data Service. The NDS delivers thousands of open national statistical indicators for the UK as data-as-a-service. Data are sourced from major providers such as the Office for National Statistics, Public Health England and Police UK and made available for your area at standard geographies such as counties, districts and wards and census output areas. This premium service can be consumed as online web services or on-premise for use throughout the ArcGIS system.Read more about the NDS.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2024 based on 196 countries was 10.43 percent. The highest value was in Monaco: 36.17 percent and the lowest value was in Qatar: 1.68 percent. The indicator is available from 1960 to 2024. Below is a chart for all countries where data are available.
Facebook
TwitterIn 1938, the year before the outbreak of the Second world War, the countries with the largest populations were China, the Soviet Union, and the United States, although the United Kingdom had the largest overall population when it's colonies, dominions, and metropole are combined. Alongside France, these were the five Allied "Great Powers" that emerged victorious from the Second World War. The Axis Powers in the war were led by Germany and Japan in their respective theaters, and their smaller populations were decisive factors in their defeat. Manpower as a resource In the context of the Second World War, a country or territory's population played a vital role in its ability to wage war on such a large scale. Not only were armies able to call upon their people to fight in the war and replenish their forces, but war economies were also dependent on their workforce being able to meet the agricultural, manufacturing, and logistical demands of the war. For the Axis powers, invasions and the annexation of territories were often motivated by the fact that it granted access to valuable resources that would further their own war effort - millions of people living in occupied territories were then forced to gather these resources, or forcibly transported to work in manufacturing in other Axis territories. Similarly, colonial powers were able to use resources taken from their territories to supply their armies, however this often had devastating consequences for the regions from which food was redirected, contributing to numerous food shortages and famines across Africa, Asia, and Europe. Men from annexed or colonized territories were also used in the armies of the war's Great Powers, and in the Axis armies especially. This meant that soldiers often fought alongside their former-enemies. Aftermath The Second World War was the costliest in human history, resulting in the deaths of between 70 and 85 million people. Due to the turmoil and destruction of the war, accurate records for death tolls generally do not exist, therefore pre-war populations (in combination with other statistics), are used to estimate death tolls. The Soviet Union is believed to have lost the largest amount of people during the war, suffering approximately 24 million fatalities by 1945, followed by China at around 20 million people. The Soviet death toll is equal to approximately 14 percent of its pre-war population - the countries with the highest relative death tolls in the war are found in Eastern Europe, due to the intensity of the conflict and the systematic genocide committed in the region during the war.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Each year Eurostat collects demographic data at regional level from EU, EFTA and Candidate countries as part of the Population Statistics data collection. POPSTAT is Eurostat’s main annual demographic data collection and aims to gather information on demography and migration at national and regional levels by various breakdowns (for the full overview see the Eurostat dedicated section). More specifically, POPSTAT collects data at regional levels on:
Each country must send the statistics for the reference year (T) to Eurostat by 31 December of the following calendar year (T+1). Eurostat then publishes the data in March of the calendar year after that (T+2).
Demographic data at regional level include statistics on the population at the end of the calendar year and on live births and deaths during that year, according to the official classification for statistics at regional level (NUTS - nomenclature of territorial units for statistics) in force in the year. These data are broken down by NUTS 2 and 3 levels for EU countries. For more information on the NUTS classification and its versions please refer to the Eurostat dedicated pages. For EFTA and Candidate countries the data are collected according to the agreed statistical regions that have been coded in a way that resembles NUTS.
The breakdown of demographic data collected at regional level varies depending on the NUTS/statistical region level. These breakdowns are summarised below, along with the link to the corresponding online table:
NUTS 2 level
NUTS 3 level
This more detailed breakdown (by five-year age group) of the data collected at NUTS 3 level started with the reference year 2013 and is in accordance with the European laws on demographic statistics. In addition to the regional codes set out in the NUTS classification in force, these online tables include few additional codes that are meant to cover data on persons and events that cannot be allocated to any official NUTS region. These codes are denoted as CCX/CCXX/CCXXX (Not regionalised/Unknown level 1/2/3; CC stands for country code) and are available only for France, Hungary, North Macedonia and Albania, reflecting the raw data as transmitted to Eurostat.
For the reference years from 1990 to 2012 all countries sent to Eurostat all the data on a voluntary basis, therefore the completeness of the tables and the length of time series reflect the level of data received from the responsible National Statistical Institutes’ (NSIs) data provider. As a general remark, a lower data breakdown is available at NUTS 3 level as detailed:
Demographic indicators are calculated by Eurostat based on the above raw data using a common methodology for all countries and regions. The regional demographic indicators computed by NUTS level and the corresponding online tables are summarised below:
NUTS 2 level
NUTS 3 level
Notes:
1) All the indicators are computed for all lower NUTS regions included in the tables (e.g. data included in a table at NUTS 3 level will include also the data for NUTS 2, 1 and country levels).
2) Demographic indicators computed by NUTS 2 and 3 levels are calculated using input data that have different age breakdown. Therefore, minor differences can be noted between the values corresponding to the same indicator of the same region classified as NUTS 2, 1 or country level.
3) Since the reference year 2015, Eurostat has stopped collecting data on area; therefore, the table 'Area by NUTS 3 region (demo_r_d3area)' includes data up to the year 2015 included.
4) Starting with the reference year 2016, the population density indicator is computed using the new data on area 'Area by NUTS 3 region (reg_area3).
Facebook
TwitterCOVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. 100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent one third of case days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 63 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 6-21 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 6 to 21 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 6-21 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 6-21 days and less than past 2 days indicates slight positive trend, but likely still within peak trend timeframe.Past five days is less than the past 6-21 days. This means a downward trend. This would be an important trend for any administrative area in an epidemic trend that the rate of spread is slowing.If less than the past 2 days, but not the last 6-21 days, this is still positive, but is not indicating a passage out of the peak timeframe of the daily new cases curve.Past 5 days has only one or two new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 6 to 21 days. Most recent 6-21 days: Represents the full tail of the curve and provides context for the past 2- and 5-day trends.If this is greater than both the 2- and 5-day trends, then a short-term downward trend has begun. Mean of Recent Tail NCD in the context of the Mean of All NCD, and raw counts of cases:Mean of Recent NCD is less than 0.5 cases per 100,000 = high level of controlMean of Recent NCD is less than 1.0 and fewer than 30 cases indicate continued emergent trend.3. Mean of Recent NCD is less than 1.0 and greater than 30 cases indicate a change from emergent to spreading trend.Mean of All NCD less than 2.0 per 100,000, and areas that have been in epidemic trends have Mean of Recent NCD of less than 5.0 per 100,000 is a significant indicator of changing trends from epidemic to spreading, now going in the direction of controlled trend.Similarly, in the context of Mean of All NCD greater than 2.0
Facebook
TwitterIn the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
UK residents by broad country of birth and citizenship groups, broken down by UK country, local authority, unitary authority, metropolitan and London boroughs, and counties. Estimates from the Annual Population Survey.
Facebook
TwitterEstimated number of persons by quarter of a year and by year, Canada, provinces and territories.
Facebook
TwitterIn 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.