28 datasets found
  1. F

    Dow Jones Industrial Average

    • fred.stlouisfed.org
    json
    Updated Sep 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 8, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-09-09 to 2025-09-08 about stock market, average, industry, and USA.

  2. Monthly development Dow Jones Industrial Average Index 2018-2025

    • statista.com
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly development Dow Jones Industrial Average Index 2018-2025 [Dataset]. https://www.statista.com/statistics/261690/monthly-performance-of-djia-index/
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Jun 2025
    Area covered
    United States
    Description

    The value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.

  3. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +11more
    csv, excel, json, xml
    Updated Sep 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Sep 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Sep 9, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6509 points on September 9, 2025, gaining 0.22% from the previous session. Over the past month, the index has climbed 2.13% and is up 18.45% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

  4. Annual performance of the Dow Jones Composite Index 2000-2024

    • statista.com
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual performance of the Dow Jones Composite Index 2000-2024 [Dataset]. https://www.statista.com/statistics/189758/dow-jones-composite-index-closing-year-end-values-since-2000/
    Explore at:
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Dow Jones Composite Index finished the year 2024 at 13,391.71 points, an increase compared to the previous year. Even with the economic effects of the global coronavirus (COVID-19) pandemic, 2021 had the highest point of the index in the past two decades. What is Dow Jones Composite Index? The Dow Jones Composite Index is one of the indices from the Dow Jones index family. It is composed of 65 leading U.S. companies: 30 stocks forming the Dow Jones Industrial Average index, 20 stocks from the Dow Jones Transportation index and 15 stocks from the Dow Jones Utility Average index. Importance of stock indices A stock market index shows an average performance of companies from a given section of the market. It is usually a weighted average, meaning that such factors as price of companies or their market capitalization are taken into consideration when calculating the index value. Stock indices are very useful for the financial market participants, as they instantly show the sentiments prevailing on a given market. They are also commonly used as a benchmark against portfolio performance, showing if a given portfolio has outperformed, or underperformed the market.

  5. Weekly development Dow Jones Industrial Average Index 2020-2025

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Weekly development Dow Jones Industrial Average Index 2020-2025 [Dataset]. https://www.statista.com/statistics/1104278/weekly-performance-of-djia-index/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Mar 2, 2025
    Area covered
    United States
    Description

    The Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.

  6. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Sep 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  7. Dow Jones: monthly value 1920-1955

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Dow Jones: monthly value 1920-1955 [Dataset]. https://www.statista.com/statistics/1249670/monthly-change-value-dow-jones-depression/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1920 - Dec 1955
    Area covered
    United States
    Description

    Throughout the 1920s, prices on the U.S. stock exchange rose exponentially, however, by the end of the decade, uncontrolled growth and a stock market propped up by speculation and borrowed money proved unsustainable, resulting in the Wall Street Crash of October 1929. This set a chain of events in motion that led to economic collapse - banks demanded repayment of debts, the property market crashed, and people stopped spending as unemployment rose. Within a year the country was in the midst of an economic depression, and the economy continued on a downward trend until late-1932.

    It was during this time where Franklin D. Roosevelt (FDR) was elected president, and he assumed office in March 1933 - through a series of economic reforms and New Deal policies, the economy began to recover. Stock prices fluctuated at more sustainable levels over the next decades, and developments were in line with overall economic development, rather than the uncontrolled growth seen in the 1920s. Overall, it took over 25 years for the Dow Jones value to reach its pre-Crash peak.

  8. F

    Dow Jones Transportation Average

    • fred.stlouisfed.org
    json
    Updated Sep 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dow Jones Transportation Average [Dataset]. https://fred.stlouisfed.org/series/DJTA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 5, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    Graph and download economic data for Dow Jones Transportation Average (DJTA) from 2015-09-08 to 2025-09-05 about stock market, transportation, average, and USA.

  9. T

    United States Stock Market Index (US30) - Index Price | Live Quote |...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). United States Stock Market Index (US30) - Index Price | Live Quote | Historical Chart | Trading Economics [Dataset]. https://tradingeconomics.com/indu:ind
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Jun 7, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Sep 8, 2025
    Area covered
    United States
    Description

    Prices for United States Stock Market Index (US30) including live quotes, historical charts and news. United States Stock Market Index (US30) was last updated by Trading Economics this September 8 of 2025.

  10. 34-year Daily Stock Data (1990-2024)

    • kaggle.com
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shivesh Prakash (2024). 34-year Daily Stock Data (1990-2024) [Dataset]. https://www.kaggle.com/datasets/shiveshprakash/34-year-daily-stock-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 10, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Shivesh Prakash
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description: 34-year Daily Stock Data (1990-2024)

    Context and Inspiration

    This dataset captures historical financial market data and macroeconomic indicators spanning over three decades, from 1990 onwards. It is designed for financial analysis, time series forecasting, and exploring relationships between market volatility, stock indices, and macroeconomic factors. This dataset is particularly relevant for researchers, data scientists, and enthusiasts interested in studying: - Volatility forecasting (VIX) - Stock market trends (S&P 500, DJIA, HSI) - Macroeconomic influences on markets (joblessness, interest rates, etc.) - The effect of geopolitical and economic uncertainty (EPU, GPRD)

    Sources

    The data has been aggregated from a mix of historical financial records and publicly available macroeconomic datasets: - VIX (Volatility Index): Chicago Board Options Exchange (CBOE). - Stock Indices (S&P 500, DJIA, HSI): Yahoo Finance and historical financial databases. - Volume Data: Extracted from official exchange reports. - Macroeconomic Indicators: Bureau of Economic Analysis (BEA), Federal Reserve, and other public records. - Uncertainty Metrics (EPU, GPRD): Economic Policy Uncertainty Index and Global Policy Uncertainty Database.

    Columns

    1. dt: Date of observation in YYYY-MM-DD format.
    2. vix: VIX (Volatility Index), a measure of expected market volatility.
    3. sp500: S&P 500 index value, a benchmark of the U.S. stock market.
    4. sp500_volume: Daily trading volume for the S&P 500.
    5. djia: Dow Jones Industrial Average (DJIA), another key U.S. market index.
    6. djia_volume: Daily trading volume for the DJIA.
    7. hsi: Hang Seng Index, representing the Hong Kong stock market.
    8. ads: Aruoba-Diebold-Scotti (ADS) Business Conditions Index, reflecting U.S. economic activity.
    9. us3m: U.S. Treasury 3-month bond yield, a short-term interest rate proxy.
    10. joblessness: U.S. unemployment rate, reported as quartiles (1 represents lowest quartile and so on).
    11. epu: Economic Policy Uncertainty Index, quantifying policy-related economic uncertainty.
    12. GPRD: Geopolitical Risk Index (Daily), measuring geopolitical risk levels.
    13. prev_day: Previous day’s S&P 500 closing value, added for lag-based time series analysis.

    Key Features

    • Cross-Market Analysis: Compare U.S. markets (S&P 500, DJIA) with international benchmarks like HSI.
    • Macroeconomic Insights: Assess how external factors like joblessness, interest rates, and economic uncertainty affect markets.
    • Temporal Scope: Longitudinal data facilitates trend analysis and machine learning model training.

    Potential Use Cases

    • Forecasting market indices using machine learning or statistical models.
    • Building volatility trading strategies with VIX Futures.
    • Economic research on relationships between policy uncertainty and market behavior.
    • Educational material for financial data visualization and analysis tutorials.

    Feel free to use this dataset for academic, research, or personal projects.

  11. F

    Dow-Jones Industrial Stock Price Index for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Dow-Jones Industrial Stock Price Index for United States [Dataset]. https://fred.stlouisfed.org/series/M1109BUSM293NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Dow-Jones Industrial Stock Price Index for United States (M1109BUSM293NNBR) from Dec 1914 to Dec 1968 about stock market, industry, price index, indexes, price, and USA.

  12. N

    Dow City, IA Age Group Population Dataset: A Complete Breakdown of Dow City...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Dow City, IA Age Group Population Dataset: A Complete Breakdown of Dow City Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/dow-city-ia-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Dow City
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Dow City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Dow City. The dataset can be utilized to understand the population distribution of Dow City by age. For example, using this dataset, we can identify the largest age group in Dow City.

    Key observations

    The largest age group in Dow City, IA was for the group of age 20 to 24 years years with a population of 63 (16.41%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Dow City, IA was the 85 years and over years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Dow City is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Dow City total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Dow City Population by Age. You can refer the same here

  13. N

    Dow City, IA Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dow City, IA Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Dow City from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/dow-city-ia-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Dow City
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Dow City population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Dow City across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Dow City was 467, a 0.85% decrease year-by-year from 2022. Previously, in 2022, Dow City population was 471, a decline of 1.26% compared to a population of 477 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Dow City decreased by 41. In this period, the peak population was 510 in the year 2003. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Dow City is shown in this column.
    • Year on Year Change: This column displays the change in Dow City population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Dow City Population by Year. You can refer the same here

  14. Daily News for Stock Market Prediction

    • kaggle.com
    zip
    Updated Nov 13, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron7sun (2019). Daily News for Stock Market Prediction [Dataset]. https://www.kaggle.com/datasets/aaron7sun/stocknews/discussion/41925
    Explore at:
    zip(6097730 bytes)Available download formats
    Dataset updated
    Nov 13, 2019
    Authors
    Aaron7sun
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Actually, I prepare this dataset for students on my Deep Learning and NLP course.

    But I am also very happy to see kagglers play around with it.

    Have fun!

    Description:

    There are two channels of data provided in this dataset:

    1. News data: I crawled historical news headlines from Reddit WorldNews Channel (/r/worldnews). They are ranked by reddit users' votes, and only the top 25 headlines are considered for a single date. (Range: 2008-06-08 to 2016-07-01)

    2. Stock data: Dow Jones Industrial Average (DJIA) is used to "prove the concept". (Range: 2008-08-08 to 2016-07-01)

    I provided three data files in .csv format:

    1. RedditNews.csv: two columns The first column is the "date", and second column is the "news headlines". All news are ranked from top to bottom based on how hot they are. Hence, there are 25 lines for each date.

    2. DJIA_table.csv: Downloaded directly from Yahoo Finance: check out the web page for more info.

    3. Combined_News_DJIA.csv: To make things easier for my students, I provide this combined dataset with 27 columns. The first column is "Date", the second is "Label", and the following ones are news headlines ranging from "Top1" to "Top25".

    =========================================

    To my students:

    I made this a binary classification task. Hence, there are only two labels:

    "1" when DJIA Adj Close value rose or stayed as the same;

    "0" when DJIA Adj Close value decreased.

    For task evaluation, please use data from 2008-08-08 to 2014-12-31 as Training Set, and Test Set is then the following two years data (from 2015-01-02 to 2016-07-01). This is roughly a 80%/20% split.

    And, of course, use AUC as the evaluation metric.

    =========================================

    +++++++++++++++++++++++++++++++++++++++++

    To all kagglers:

    Please upvote this dataset if you like this idea for market prediction.

    If you think you coded an amazing trading algorithm,

    friendly advice

    do play safe with your own money :)

    +++++++++++++++++++++++++++++++++++++++++

    Feel free to contact me if there is any question~

    And, remember me when you become a millionaire :P

    Note: If you'd like to cite this dataset in your publications, please use:

    Sun, J. (2016, August). Daily News for Stock Market Prediction, Version 1. Retrieved [Date You Retrieved This Data] from https://www.kaggle.com/aaron7sun/stocknews.

  15. Worst days in the history of Dow Jones Industrial Average index 1897-2024

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Worst days in the history of Dow Jones Industrial Average index 1897-2024 [Dataset]. https://www.statista.com/statistics/261797/the-worst-days-of-the-dow-jones-index-since-1897/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The statistic shows the worst days of the Dow Jones Industrial Average index from 1897 to 2024. The worst day in the history of the index was ****************, when the index value decreased by ***** percent. The largest single day loss in points was on ***********.

  16. Largest point losses of the Dow Jones Average 2025

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest point losses of the Dow Jones Average 2025 [Dataset]. https://www.statista.com/statistics/274327/largest-single-day-losses-of-the-dow-jones-index/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Following the announcement of sweeping tariffs on all countries by Donald Trump, ************* became the day with the third-highest point losses for the Dow Jones Industrial Average in history. Worse than the loss experienced on that day were only the losses that occurred following the beginning of the COVID-19 pandemic. The Dow Jones Industrial Average posted significant points losses due to the global impact of the coronavirus pandemic in 2020. With stocks falling sharply, the Dow recorded its worst single-day points drop ever, plunging ***** points – nearly ** percent – on **************.

  17. N

    Dow City, IA Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Dow City, IA Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/dow-city-ia-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Dow City
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Dow City, IA population pyramid, which represents the Dow City population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Dow City, IA, is 22.4.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Dow City, IA, is 39.7.
    • Total dependency ratio for Dow City, IA is 62.0.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Dow City, IA is 2.5.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Dow City population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Dow City for the selected age group is shown in the following column.
    • Population (Female): The female population in the Dow City for the selected age group is shown in the following column.
    • Total Population: The total population of the Dow City for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Dow City Population by Age. You can refer the same here

  18. Monthly development S&P 500 Index 2018-2024

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly development S&P 500 Index 2018-2024 [Dataset]. https://www.statista.com/statistics/697624/monthly-sandp-500-index-performance/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Dec 2024
    Area covered
    United States
    Description

    The S&P 500, an index of 500 publicly traded companies in the United States, closed at ******** points on the last trading day of December 2024. What is the S&P 500? The S&P 500 is a stock market index that tracks the evolution of 500 companies. In contrast to the Dow Jones Industrial Index, which measures the performance of thirty large U.S. companies, the S&P 500 shows the sentiments in the broader market. Publicly traded companies Companies on the S&P 500 are publicly traded, meaning that anyone can invest in them. A large share of adults in the United States invest in the stock market, though many of these are through a retirement account or mutual fund. While most people make a modest return, the most successful investors have made billions of U.S. dollars through investing.

  19. Weekly development S&P 500 Index 2024

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Weekly development S&P 500 Index 2024 [Dataset]. https://www.statista.com/statistics/1104270/weekly-sandp-500-index-performance/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Dec 29, 2024
    Area covered
    United States
    Description

    Between March 4 and March 11, 2020, the S&P 500 index declined by ** percent, descending into a bear market. On March 12, 2020, the S&P 500 plunged *** percent, its steepest one-day fall since 1987. The index began to recover at the start of April and reached a peak in December 2021. As of December 29, 2024, the value of the S&P 500 stood at ******** points. Coronavirus sparks stock market chaos Stock markets plunged in the wake of the COVID-19 pandemic, with investors fearing its spread would destroy economic growth. Buoyed by figures that suggested cases were leveling off in China, investors were initially optimistic about the virus being contained. However, confidence in the market started to subside as the number of cases increased worldwide. Investors were deterred from buying stocks, and this was reflected in the markets – the values of the Dow Jones Industrial Average and the Nasdaq Composite also dived during the height of the crisis. What is a bear market? A bear market occurs when the value of a stock market suffers a prolonged decline of more than 20 percent over a period of at least 2 months. The COVID-19 pandemic caused severe concern and sent stock markets on a steep downward spiral. The S&P 500 achieved a record closing high of ***** on February 19, 2020. However, just over 3 weeks later, the market closed on *****, which represented a decline of around ** percent in only 16 sessions.

  20. TRACE_DJIA

    • kaggle.com
    Updated Aug 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guoxuan Sun (2025). TRACE_DJIA [Dataset]. https://www.kaggle.com/datasets/williamtage/trace-djia
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Guoxuan Sun
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Context Predicting stock market movements is a classic challenge in machine learning. While raw Open, High, Low, Close, and Volume (OHLCV) data is the standard starting point, its predictive power is often limited. To build robust models, data scientists require a much richer feature set that captures different aspects of market dynamics, from technical patterns to sentiment hidden in financial news.

    This dataset was created to bridge that gap. It provides a highly-enriched, pre-processed collection of features for the Dow Jones Industrial Average (DJIA), designed to accelerate research and modeling for stock price prediction.

    Content The dataset is organized into several files, each representing a distinct category of engineered features. This modular structure allows you to easily select, combine, or test the importance of different feature types.

    • final_daily_news_graph_embeddings.npy This is a 3D NumPy tensor with the shape (Number of Days, 25, 128).

    Description: Each day's top 25 news headlines have been transformed into a sophisticated knowledge graph. These graphs, enriched with data from Wikidata, are then encoded into 128-dimensional vectors using a Graph Convolutional Network (GCN). This file captures the semantic meaning and relationships within the news, providing a powerful non-price-based feature.

    • DJIA_engineered_features_1.csv

    Description: Contains fundamental features derived directly from OHLCV data. These are crucial for capturing intraday volatility and price action.

    Example Features: intraday_range, body_size, price_change, simple_return, log_return, price_volume_interaction.

    • DJIA_technical_indicators_2.csv

    Description: A wide array of popular technical indicators calculated using the pandas-ta library. These features are staples of financial analysis and help identify trends, momentum, and volatility.

    Example Features: Simple Moving Averages (SMA_20, SMA_50, SMA_200), Exponential Moving Averages (EMA_12, EMA_26), MACD, RSI, Bollinger Bands (BBL, BBM, BBU), On-Balance Volume (OBV), and more.

    • DJIA_statistical_time_features_3.csv

    Description: This file includes features based on the statistical properties of returns over an optimized rolling window, as well as cyclical time-based features. The optimal window was determined by finding the period with the highest correlation to future returns.

    Example Features: rolling_mean, rolling_std (volatility), rolling_skew, rolling_kurt, day_of_week_sin, day_of_week_cos, is_month_end.

    • DJIA_advanced_features_4.csv

    Description: More complex and transformational features designed to capture deeper market dynamics.

    Example Features: Lagged returns and RSI, quantitative candlestick pattern features, wavelet transform coefficients (to decompose price signals into different frequencies), and the Hurst Exponent (to measure long-term memory in the time series).

    Methodology The features were systematically generated using a series of Python scripts.

    News Embeddings: Headlines were processed to extract named entities. These entities were used to build knowledge subgraphs from Wikidata. Finally, a Graph Convolutional Network (GCN) model encoded these graphs into dense vectors.

    Tabular Features: All other features were generated from the raw DJIA price and volume data. The process involved several stages, from basic price calculations to advanced transformations. For features requiring a lookback period (e.g., rolling statistics, Hurst exponent), an optimal window length was programmatically determined to maximize its correlation with the target variable.

    Acknowledgements The raw OHLCV and news data was originally sourced from: https://www.kaggle.com/datasets/aaron7sun/stocknews. We thank them for making the data available.

    Inspiration This dataset is perfect for a variety of financial machine learning tasks:

    Can you build a model to predict the next day's market direction (Up/Down)?

    Which feature set is the most powerful? The technical indicators, the news embeddings, or a combination of all?

    How do advanced features like the Hurst exponent or wavelet coefficients contribute to model performance?

    Can you use these features to build a profitable trading strategy (backtesting required)?

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). Dow Jones Industrial Average [Dataset]. https://fred.stlouisfed.org/series/DJIA

Dow Jones Industrial Average

DJIA

Explore at:
26 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Sep 8, 2025
License

https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

Description

Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-09-09 to 2025-09-08 about stock market, average, industry, and USA.

Search
Clear search
Close search
Google apps
Main menu