This dataset contains information on the ratio of family income to the federal poverty level at the zip code tabulation area (ZCTA) level. Each column beginning with a "T_" lists the total number of families that fall into each income category. In addition, the dataset contains information on margins of error and the reliability of each estimate, to help guide decisionmakers in more effectively using the data contained in this file. There are approximately 1,000 records in this dataset. ZCTA boundaries are designed to approximate actual zip code boundaries, but are fixed to allow for consistent data analysis (whereas regular zip code boundaries change frequently). Field description metadata is available for download. For more information on poverty data from the Census Bureau, please visit American Factfinder (www.factfinder2.census.gov).
This dataset contains information on the ratio of family income to the federal poverty level at the census tract level. Each column beginning with a "T_" lists the total number of families that fall into each income category. In addition, the dataset contains information on margins of error and the reliability of each estimate, to help guide decisionmakers in more effectively using the data contained in this file. There are approximately 2,800 records in this dataset; census tract boundaries are generally drawn based on population, and are targeted to include bewteen 3,000 and 8,000 residents.
Field description metadata is available for download. For more information on poverty data from the Census Bureau, please visit American Factfinder (www.factfinder2.census.gov).
In 2023, nearly *********** Generation Alpha were living in poverty in the United States, with ** percent of Gen Alpha living in families with incomes below the federal poverty line. In comparison, only **** percent of Generation X were living in poverty in that year.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
CHILDREN_POVERTY_2013_USCB_IN.SHP is a polygon shapefile showing 2013 census data showing percentages of children in poverty for each 2013-2014 school district within Indiana. Poverty data were provided by personnel of the Indiana Business Research Center (Rachel Strange, Geodemographic Analyst, Managing Editor, IBRC), which were obtained from the Web page of the U. S. Department of Commerce, U. S. Census Bureau, titled "Small Area Income and Poverty Estimates," http://www.census.gov/did/www/saipe/data/interactive/#. Discussion of these data, which are estimates produced under the Census Bureau's Small Area Income and Poverty Estimates (SAIPE) program, are provided at http://www.census.gov/did/www/saipe/about/index.html.The following is excerpted from metadata of the U.S. Census Bureau (2013-2014 School Districts) and also from the Web page of the SAIPE program ( http://www.census.gov/did/www/saipe/downloads/sd13/README.txt ) :"School Districts are single-purpose administrative units within which local officials provide public educational services for the area's residents. The Census Bureau obtains school district boundaries, names, local education agency codes, grade ranges, and school district levels biennially from state school officials. The Census Bureau collects this information for the primary purpose of providing the U.S. Department of Education with annual estimates of the number of children in poverty within each school district, county, and state. This information serves as the basis for the Department of Education to determine the annual allocation of Title I funding to states and school districts."The 2014 TIGER/Line Shapefiles include separate shapefiles for elementary, secondary, and unified school districts. The 2014 shapefiles contain information from the 2013-2014 school year. The 2013-2014 school districts represent districts in operation as of January 1, 2014."The elementary school districts provide education to the lower grade/age levels and the secondary school districts provide education to the upper grade/age levels. The unified school districts are districts that provide education to children of all school ages. In general, where there is a unified school district, no elementary or secondary school district exists (see exceptions described below), and where there is an elementary school district the secondary school district may or may not exist (see explanation below)."The U.S. Census Bureau's Small Area Income and Poverty Estimates (SAIPE) program provides annual estimates of income and poverty statistics for all school districts, counties, and states. The main objective of this program is to provide estimates of income and poverty for the administration of federal programs and the allocation of federal funds to local jurisdictions. In addition to these federal programs, state and local programs use the income and poverty estimates for distributing funds and managing programs."The SAIPE program produces the following county and state estimates: Total number of people in poverty. Number of children under age 5 in poverty (for states only). Number of related children ages 5 to 17 in families in poverty. Number of children under age 18 in poverty. Median household income."
Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2010 census tracts split by 2013 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2010 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT10: 2010 Census tractFIP13: 2013 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2013) CT10FIP13: 2010 census tract with 2013 city FIPs for incorporated cities and unincorporated areas. SPA12: 2012 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD12: 2012 Health District (HD) number: HD_NAME: Health District name.POP13_AGE_0_4: 2013 population 0 to 4 years oldPOP13_AGE_5_9: 2013 population 5 to 9 years old POP13_AGE_10_14: 2013 population 10 to 14 years old POP13_AGE_15_17: 2013 population 15 to 17 years old POP13_AGE_18_19: 2013 population 18 to 19 years old POP13_AGE_20_44: 2013 population 20 to 24 years old POP13_AGE_25_29: 2013 population 25 to 29 years old POP13_AGE_30_34: 2013 population 30 to 34 years old POP13_AGE_35_44: 2013 population 35 to 44 years old POP13_AGE_45_54: 2013 population 45 to 54 years old POP13_AGE_55_64: 2013 population 55 to 64 years old POP13_AGE_65_74: 2013 population 65 to 74 years old POP13_AGE_75_84: 2013 population 75 to 84 years old POP13_AGE_85_100: 2013 population 85 years and older POP13_WHITE: 2013 Non-Hispanic White POP13_BLACK: 2013 Non-Hispanic African AmericanPOP13_AIAN: 2013 Non-Hispanic American Indian or Alaska NativePOP13_ASIAN: 2013 Non-Hispanic Asian POP13_HNPI: 2013 Non-Hispanic Hawaiian Native or Pacific IslanderPOP13_HISPANIC: 2013 HispanicPOP13_MALE: 2013 Male POP13_FEMALE: 2013 Female POV13_WHITE: 2013 Non-Hispanic White below 100% Federal Poverty Level POV13_BLACK: 2013 Non-Hispanic African American below 100% Federal Poverty Level POV13_AIAN: 2013 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV13_ASIAN: 2013 Non-Hispanic Asian below 100% Federal Poverty Level POV13_HNPI: 2013 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV13_HISPANIC: 2013 Hispanic below 100% Federal Poverty Level POV13_TOTAL: 2013 Total population below 100% Federal Poverty Level POP13_TOTAL: 2013 Total PopulationAREA_SQMIL: Area in square milePOP13_DENSITY: Population per square mile.POV13_PERCENT: Poverty rate/percentage.How this data created?Split tract polygon data is created by intersecting 2010 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Population by age, race/ethnicity and gender are extracted from census data at blocks, and allocated to each area of split tracts by aggregating block-based population count. The poverty population is allocated to split tracts according to population proportion. The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is then attached to the split tract geography to create this data.Note:1. Population and poverty data estimated as of July 1, 2013. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
This dataset contains information on the ratio of family income to the federal poverty level at the county subdivision level. Each column beginning with a "T_" lists the total number of families that fall into each income category. In addition, the dataset contains information on margins of error and the reliability of each estimate, to help guide decisionmakers in more effectively using the data contained in this file. There are approximately 1,600 records in this dataset. County subdivisions consist of incorporated cities and townships, and do not cross county borders.
Field description metadata is available for download. For more information on poverty data from the Census Bureau, please visit American Factfinder (www.factfinder2.census.gov).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Income to Poverty Ratios in Michigan by Census Tract, 2013’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/9769d407-e677-4051-bbc0-65d8af30f9a7 on 12 February 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains information on the ratio of family income to the federal poverty level at the census tract level. Each column beginning with a "T_" lists the total number of families that fall into each income category. In addition, the dataset contains information on margins of error and the reliability of each estimate, to help guide decisionmakers in more effectively using the data contained in this file. There are approximately 2,800 records in this dataset; census tract boundaries are generally drawn based on population, and are targeted to include bewteen 3,000 and 8,000 residents.
Field description metadata is available for download. For more information on poverty data from the Census Bureau, please visit American Factfinder (www.factfinder2.census.gov).
--- Original source retains full ownership of the source dataset ---
In Sweden, the at-risk-of-poverty rate between 2013 and 2023 was highest among citizens born outside of the EU. It usually lay between 30 and 40 percent. The rates were significantly lower for people born in the EU or in Sweden, between 15 and 20 percent and around 11 percent, respectively.
Since 2013, the multidimensional poverty index in Colombia has decreased considerably. As of 2024, it stood at 11.5 points, over 12 percentage points lower than at the beginning of the period under consideration. The index focuses on the following factors: educational conditions, conditions of childhood and youth, employment, health and housing conditions and public services.
2013 sub-regional fuel poverty data: low income high costs indicator.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data set contains average income and poverty data by city, census tract and counties in Utah for 2013.
American Community Survey Public Use Micro Sample, augmented by NYC Opportunity.
This file contains poverty rates and related data from the NYCgov poverty measure data. The NYCgov poverty measure is generated annually by the poverty research unit of the Mayor's Office of Economic Opportunity (NYC Opportunity). The data is derived from the American Community Survey Public Use Microsample for NYC, augmented by NYC Opportunity to include imputed estimates for benefit participation and some household expenditures. For information on how the NYCgov poverty rate is constructed see http://www1.nyc.gov/site/opportunity/poverty-in-nyc/poverty-measure.page.
DISCLAIMER: Do not use the visualization tool with this data set. This data set is unweighted. See “Read Me” page in data dictionary for correct use of person and household weights. Visualizations generated from this file will result in incorrect distributions of the data.
For the list of all NYCgov Poverty Measure Data datasets available on the portal please use this link.
Long term trends under the Low Income High Costs indicator.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Income to Poverty Ratios in Michigan by Zip Code Tabulation Area, 2013’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d6fff09f-d425-4154-be2d-1ddbb8eb7d85 on 26 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains information on the ratio of family income to the federal poverty level at the zip code tabulation area (ZCTA) level. Each column beginning with a "T_" lists the total number of families that fall into each income category. In addition, the dataset contains information on margins of error and the reliability of each estimate, to help guide decisionmakers in more effectively using the data contained in this file. There are approximately 1,000 records in this dataset. ZCTA boundaries are designed to approximate actual zip code boundaries, but are fixed to allow for consistent data analysis (whereas regular zip code boundaries change frequently).
Field description metadata is available for download. For more information on poverty data from the Census Bureau, please visit American Factfinder (www.factfinder2.census.gov).
--- Original source retains full ownership of the source dataset ---
The share of population living on less than 3.2 U.S. dollars per day in Costa Rica declined to three percent in 2023. The share thereby reached its lowest value in recent years. The poverty headcount ratio refers to the share of the total population living on less than an average of 3.2 dollars per day. 2011 international dollars and purchasing power parity (PPP) have been used to allow comparisons over extended periods without the influence of monetary inflation.Find more key insights for the share of population living on less than 3.2 U.S. dollars per day in countries like Honduras and El Salvador.
As announced in the government’s 2021 fuel poverty strategy, Sustainable Warmth, official fuel poverty statistical data from 2019 onwards will be based on the Low Income Low Energy Efficiency (LILEE) indicator.
2013 fuel poverty detailed tables under the Low Income High Costs (LIHC) and Low Income Low Energy Efficiency (LILEE) indicators.
If you have questions about these statistics, please email: fuelpoverty@beis.gov.uk.
The fuel poverty statistics report for 2015 includes: •the latest statistics on the number of households living in fuel poverty, in England •analysis of the composition of the fuel poor group in 2013 •projections of the number of households in fuel poverty in 2014 and 2015 •estimates of sub-regional fuel poverty
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multidimensional Poverty Headcount Ratio: World Bank: % of total population data was reported at 57.400 % in 2016. This records a decrease from the previous number of 58.800 % for 2013. Multidimensional Poverty Headcount Ratio: World Bank: % of total population data is updated yearly, averaging 58.100 % from Dec 2013 (Median) to 2016, with 2 observations. The data reached an all-time high of 58.800 % in 2013 and a record low of 57.400 % in 2016. Multidimensional Poverty Headcount Ratio: World Bank: % of total population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Rwanda – Table RW.World Bank.WDI: Social: Poverty and Inequality. The multidimensional poverty headcount ratio (World Bank) is the percentage of a population living in poverty according to the World Bank's Multidimensional Poverty Measure. The Multidimensional Poverty Measure includes three dimensions – monetary poverty, education, and basic infrastructure services – to capture a more complete picture of poverty.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data set contains average income and poverty data by city, census tract and counties in Utah for 2013.
This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.
The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.
The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.
Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.
*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).
This dataset contains information on the ratio of family income to the federal poverty level at the zip code tabulation area (ZCTA) level. Each column beginning with a "T_" lists the total number of families that fall into each income category. In addition, the dataset contains information on margins of error and the reliability of each estimate, to help guide decisionmakers in more effectively using the data contained in this file. There are approximately 1,000 records in this dataset. ZCTA boundaries are designed to approximate actual zip code boundaries, but are fixed to allow for consistent data analysis (whereas regular zip code boundaries change frequently). Field description metadata is available for download. For more information on poverty data from the Census Bureau, please visit American Factfinder (www.factfinder2.census.gov).