Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, visit the 2020 Census Demographic and Housing Characteristics File (DHC) Technical Documentation webpage..To protect respondent confidentiality, data have undergone disclosure avoidance methods which add "statistical noise" - small, random additions or subtractions - to the data so that no one can reliably link the published data to a specific person or household. The Census Bureau encourages data users to aggregate small populations and geographies to improve accuracy and diminish implausible results..An "(X)" means not applicable..An "-" means the statistic could not be computed because there were an insufficient number of observations..[1] The alone or in combination categories are tallies of responses rather than respondents. That is, the alone or in combination categories are not mutually exclusive. Individuals who reported two races were counted in two separate and distinct alone or in combination race categories, while those who reported three races were counted in three categories, and so on. For example, a respondent who indicated "White and Black or African American" was counted in the White alone or in combination category as well as in the Black or African American alone or in combination category. Consequently, the sum of all alone or in combination categories equals the number of races reported (i.e., responses), which exceeds the total population..[2] "Child" includes biological, adopted, and stepchildren of the householder..[3] "Own children" includes biological, adopted, and stepchildren of the householder..[4] The homeowner vacancy rate is the proportion of the homeowner inventory that is vacant "for sale." It is computed by dividing the total number of vacant units "for sale only" by the sum of owner-occupied units, vacant units that are "for sale only," and vacant units that have been sold but not yet occupied; and then multiplying by 100..[5] The rental vacancy rate is the proportion of the rental inventory that is vacant "for rent." It is computed by dividing the total number of vacant units "for rent" by the sum of the renter-occupied units, vacant units that are "for rent," and vacant units that have been rented but not yet occupied; and then multiplying by 100..Source: U.S. Census Bureau, 2020 Census Demographic Profile
Facebook
TwitterThis CSV file shows total population counts by sex, age, and race groupsdata from the2020 CensusDemographic andHousing Characteristics. Thisisshown by Nation, Consolidated City, Census Designated Place, Incorporated Placeboundaries. Eachgeographylayercontainsa common set of Census countsbased on available attributes from the U.S. Census Bureau. There are alsoadditionalcalculated attributes related to this topic, which can be mapped or used within analysis. Vintageof boundaries and attributes:2020Demographic andHousing CharacteristicsTable(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this file.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDatethe Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layerThe United States Census BureauDemographic andHousing Characteristics:2020 Census Results2020 Census Data QualityGeography &2020 CensusTechnical DocumentationData Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & UpdatesData Processing Notes:These 2020 Census boundaries come from the US Census TIGER geodatabases.These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. ForCensustractsand block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square metersor larger (mid tolarge sizedwater bodies) are erased from the tractand block groupboundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased tomore accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layercontainsall US states, Washington D.C., and Puerto Rico.Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can beidentifiedby the "_calc_" stub in the field name).Field alias names were created based on the Table Shells file available from the Data Table Guide for theDemographic Profile and Demographic andHousing Characteristics.Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected usingdifferential privacy techniquesby the U.S. Census Bureau.
Facebook
Twitterhttps://www.usa.gov/government-works/https://www.usa.gov/government-works/
US Census data describing national gender and race demographics from 2000 to 2020.
The 2000 and 2010 data is fairly straight-forward. The US census website only had the caveat that the 2010 category for "Some other race-only" may have been between (19.1-20.1 million / 6.2-6.5%) and the category for "2 or more races" may have been a range (8.0-9.0 million / 2.6-2.9%). The numbers used in the dataset were the final numbers that the US census gives as their final numbers.
The official 2020 Census data will not be released until May 2023, so the numbers given are not official yet.
2020 Gender: The gender numbers are an estimate (163.8-164.8 million female / 166.9-167.8 million male). I used numbers that kept the ratio and summed to the total population. 2020 Race: The categories "Some other race-only" and "2 or more races" increased significantly for 2020. These changes are mainly due to a difference in how the race and ethnicity questions were asked. (It wasn't only because the demographics themselves changed, but mainly in how people answer the question.) The "Some other race-only" includes mostly Latino and Hispanic people (94%). The "2 or more races" category includes mostly people who are both White and another race(s) (86%). You should take this change into account when comparing an earlier census to the 2020 census. Race "Minority": Lastly, the minority category is calculated by subtracting the population of White-only, Non-Hispanic people from the total US population. Anyone who is any other race besides white AND anyone who is Latino/Hispanic would fall into the minority category.
Sources: 2000 Gender (1st paragraph), 2000 Race (page 3) 2010 Gender (2nd paragraph), 2010 Race (page 4) 2020 Gender Estimates (Estimates by Age and Sex table), 2020 Race (1) (throughout article), 2020 Race (2) ("What are facts for my country" section), 2020 Race (3) (Extra, similar)
Facebook
TwitterThis layer shows total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description. Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Facebook
Twitterhttps://catalog.dvrpc.org/dvrpc_data_license.htmlhttps://catalog.dvrpc.org/dvrpc_data_license.html
This dataset contains data from the P.L. 94-171 2020 Census Redistricting Program. The 2020 Census Redistricting Data Program provides states the opportunity to delineate voting districts and to suggest census block boundaries for use in the 2020 Census redistricting data tabulations (Public Law 94-171 Redistricting Data File). In addition, the Redistricting Data Program will periodically collect state legislative and congressional district boundaries if they are changed by the states. The program is also responsible for the effective delivery of the 2020 Census P.L. 94-171 Redistricting Data statutorily required by one year from Census Day. The program ensures continued dialogue with the states in regard to 2020 Census planning, thereby allowing states ample time for their planning, response, and participation. The U.S. Census Bureau will deliver the Public Law 94-171 redistricting data to all states by Sept. 30, 2021. COVID-19-related delays and prioritizing the delivery of the apportionment results delayed the Census Bureau’s original plan to deliver the redistricting data to the states by April 1, 2021.
Data in this dataset contains information on population, diversity, race, ethnicity, housing, household, vacancy rate for 2020 for various geographies (county, MCD, Philadelphia Planning Districts (referred to as county planning areas [CPAs] internally, Census designated places, tracts, block groups, and blocks)
For more information on the 2020 Census, visit https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
PLEASE NOTE: 2020 Decennial Census data has had noise injected into it because of the Census's new Disclosure Avoidance System (DAS). This can mean that population counts and characteristics, especially when they are particularly small, may not exactly correspond to the data as collected. As such, caution should be exercised when examining areas with small counts. Ron Jarmin, acting director of the Census Bureau posted a discussion of the redistricting data, which outlines what to expect with the new DAS. For more details on accuracy you can read it here: https://www.census.gov/newsroom/blogs/director/2021/07/redistricting-data.html
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..For more information on understanding race and Hispanic origin data, please see the Census 2010 Brief entitled, Overview of Race and Hispanic Origin: 2010, issued March 2011. (pdf format).The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The 2020 Census Demographic and Housing Characteristics Noisy Measurement File is an intermediate output of the 2020 Census Disclosure Avoidance System (DAS) TopDown Algorithm (TDA) (as described in Abowd, J. et al [2022], and implemented in primitives.py). The 2020 Census Demographic and Housing Characteristics Noisy Measurement File includes zero-Concentrated Differentially Private (zCDP) (Bun, M. and Steinke, T [2016]) noisy measurements, implemented via the discrete Gaussian mechanism (Cannone C., et al., [2023] ), which added positive or negative integer-valued noise to each of the resulting counts. These are estimated counts of individuals and housing units included in the 2020 Census Edited File (CEF), which includes confidential data collected in the 2020 Census of Population and Housing.
The noisy measurements included in this file were subsequently post-processed by the TopDown Algorithm (TDA) to produce the Census Demographic and Housing Characteristics Summary File. In addition to the noisy measurements, constraints based on invariant calculations --- counts computed without noise --- are also included (with the exception of the state-level total populations, which can be sourced separately from data.census.gov).
The Noisy Measurement File was produced using the official “production settings,” the final set of algorithmic parameters and privacy-loss budget allocations that were used to produce the 2020 Census Redistricting Data (P.L. 94-171) Summary File and the 2020 Census Demographic and Housing Characteristics File.
The noisy measurements are produced in an early stage of the TDA. Afterward, these noisy measurements are post-processed to ensure internal and hierarchical consistency within the resulting tables. The Census Bureau has released these noisy measurements to enable data users to evaluate the impact of disclosure avoidance variability on 2020 Census data. The 2020 Census Demographic and Housing Characteristics (DHC) Noisy Measurement File has been cleared for public dissemination by the Census Bureau Disclosure Review Board (CBDRB-FY22-DSEP-004).
Facebook
TwitterUse this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, access Improvements to the 2020 Census Race and Hispanic Origin Question Designs, Data Processing, and Coding Procedures..Data users may observe implausible and improbable data within this product and compared with other 2020 Census data products. For example, it is possible for a detailed group to have a larger count in a tract than in its corresponding county. For more information, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..Aggregating data, such as geographies and sex by age data, diminishes accuracy and increases the likelihood of inconsistent and improbable results. For guidance on creating custom aggregations from Detailed DHC-A data, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..Counts showing an "X" are suppressed for one of two reasons: (1) the count was negative or (2) it is an alone count larger than its equivalent alone or in any combination count. If the suppressed count is an alone count, data users should use the equivalent alone in any combination count, if it is available..Table T01001 provides population counts for racial and ethnic groups at the nation and state levels. For county, tract, and place levels and American Indian/Alaska Native/Native Hawaiian (AIANNH) areas, Table T01001 provides population counts for racial and ethnic groups that met minimum population counts. For more information on the minimum population counts and accuracy, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..Washington, D.C. and American Indian/Alaska Native/Native Hawaiian (AIANNH) areas may show data when there should not be any displayed. This is due to postprocessing to ensure counts for statistically equivalent and coterminous geographies are consistent. For more information, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..Source: U.S. Census Bureau, 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A)
Facebook
TwitterThis layer shows total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, School District Unified, School District Elementary, School District Secondary boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, School District Unified, School District Elementary, School District SecondaryNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, access Improvements to the 2020 Census Race and Hispanic Origin Question Designs, Data Processing, and Coding Procedures..Data users may observe implausible and improbable data within this product and compared with other 2020 Census data products. For example, it is possible for a detailed group to have a larger count in a tract than in its corresponding county. For more information, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..Aggregating data, such as geographies and sex by age data, diminishes accuracy and increases the likelihood of inconsistent and improbable results. For guidance on creating custom aggregations from Detailed DHC-A data, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..Counts showing an "X" are suppressed for one of two reasons: (1) the count was negative or (2) it is an alone count larger than its equivalent alone or in any combination count. If the suppressed count is an alone count, data users should use the equivalent alone in any combination count, if it is available..This racial or ethnic group has sex by age data available for 23 age categories. For more information on the minimum population counts and accuracy, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..Washington, D.C. and American Indian/Alaska Native/Native Hawaiian (AIANNH) areas may show data when there should not be any displayed. This is due to postprocessing to ensure counts for statistically equivalent and coterminous geographies are consistent. For more information, access the 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A) Technical Documentation..Source: U.S. Census Bureau, 2020 Census Detailed Demographic and Housing Characteristics File A (Detailed DHC-A)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The 2020 Census Production Settings Demographic and Housing Characteristics (DHC) Approximate Monte Carlo (AMC) method seed Privacy Protected Microdata File (PPMF0) and PPMF replicates (PPMF1, PPMF2, ..., PPMF50) are a set of microdata files intended for use in estimating the magnitude of error(s) introduced by the 2020 Census Disclosure Avoidance System (DAS) into the 2020 Census Redistricting Data Summary File (P.L. 94-171), the Demographic and Housing Characteristics File, and the Demographic Profile.
The PPMF0 was the source of the publicly released, official 2020 Census data products referenced above, and was created by executing the 2020 DAS TopDown Algorithm (TDA) using the confidential 2020 Census Edited File (CEF) as the initial input; the official location for the PPMF0 is on the United States Census Bureau FTP server, but we also include a copy of it here for convenience. The replicates were then created by executing the 2020 DAS TDA repeatedly with the PPMF0 as its initial input.
Inspired by analogy to the use of bootstrap methods in non-private contexts, U.S. Census Bureau (USCB) researchers explored whether simple calculations based on comparing each PPMFi to the PPMF0 could be used to reliably estimate the scale of errors introduced by the 2020 DAS, and generally found this approach worked well.
The PPMF0 and PPMFi files contained here are provided so that external researchers can estimate properties of DAS-introduced error without privileged access to internal USCB-curated data sets; further information on the estimation methodology can be found in Ashmead et. al 2024.
The 2020 DHC AMC seed PPMF0 and PPMF replicates have been cleared for public dissemination by the USCB Disclosure Review Board (CBDRB-FY22-DSEP-004). The PPMF0 and PPMF replicates contain all Person and Units attributes necessary to produce the 2020 Census Redistricting Data Summary File (P.L. 94-171), the Demographic and Housing Characteristics File, and the Demographic Profile for both the United States and Puerto Rico, and include geographic detail down to the Census Block level. They do not include attributes specific to either the Detailed DHC-A or Detailed DHC-B products; in particular, data on Major Race (e.g., White Alone) is included, but data on Detailed Race (e.g., Cambodian) is not included in the PPMF0 and replicates.
Facebook
Twitter2020 Census P.L. 94-171 is the first detailed data release from the 2020 Decennial Census of Population and Housing. The web layer is based on an extract for Table P1 – Race at the block level geography of Broward County, Florida. The data extract was then joined to the 2020 Census TIGER/Line Shapefiles.
For details on field names, table hierarchy, and table contents refer to TABLE (MATRIX) SECTION in Chapter 6. Data Dictionary, https://www2.census.gov/programs-surveys/decennial/2020/technical-documentation/complete-tech-docs/summary-file/2020Census_PL94_171Redistricting_StatesTechDoc_English.pdf" STYLE="text-decoration:underline;">2020 Census State Public Law 94-171 Summary File Technical Documentation.
Facebook
TwitterThe Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
Facebook
TwitterThis multi-scale map shows the predominant (most numerous) race/ethnicity living within an area. Map opens at the state level, centered on the lower 48 states. Data is from U.S. Census Bureau's 2020 PL 94-171 data for state, county, tract, block group, and block.The map's colors indicate which of the eight race/ethnicity categories have the highest total count.Race and ethnicity highlights from the U.S. Census Bureau:White population remained the largest race or ethnicity group in the United States, with 204.3 million people identifying as White alone. Overall, 235.4 million people reported White alone or in combination with another group. However, the White alone population decreased by 8.6% since 2010.Two or More Races population (also referred to as the Multiracial population) has changed considerably since 2010. The Multiracial population was measured at 9 million people in 2010 and is now 33.8 million people in 2020, a 276% increase.“In combination” multiracial populations for all race groups accounted for most of the overall changes in each racial category.All of the race alone or in combination groups experienced increases. The Some Other Race alone or in combination group (49.9 million) increased 129%, surpassing the Black or African American population (46.9 million) as the second-largest race alone or in combination group.The next largest racial populations were the Asian alone or in combination group (24 million), the American Indian and Alaska Native alone or in combination group (9.7 million), and the Native Hawaiian and Other Pacific Islander alone or in combination group (1.6 million).Hispanic or Latino population, which includes people of any race, was 62.1 million in 2020. Hispanic or Latino population grew 23%, while the population that was not of Hispanic or Latino origin grew 4.3% since 2010.View more 2020 Census statistics highlights on race and ethnicity.
Facebook
TwitterMore than 39 million people and 14.2 million households span more than 163,000 square miles of Californian’s urban, suburban and rural communities. California has the fifth largest economy in the world and is the most populous state in the nation, with nation-leading diversity in race, ethnicity, language and socioeconomic conditions. These characteristics make California amazingly unique amongst all 50 states, but also present significant challenges to counting every person and every household, no matter the census year. A complete and accurate count of a state’s population in a decennial census is essential. The results of the 2020 Census will inform decisions about allocating hundreds of billions of dollars in federal funding to communities across the country for hospitals, fire departments, school lunch programs and other critical programs and services. The data collected by the United States Census Bureau (referred hereafter as U.S. Census Bureau) also determines the number of seats each state has in the U.S. House of Representatives and will be used to redraw State Assembly and Senate boundaries. California launched a comprehensive Complete Count Census 2020 Campaign (referred to hereafter as the Campaign) to support an accurate and complete count of Californians in the 2020 Census. Due to the state’s unique diversity and with insights from past censuses, the Campaign placed special emphasis on the hardest-tocount Californians and those least likely to participate in the census. The California Complete Count – Census 2020 Office (referred to hereafter as the Census Office) coordinated the State’s operations to complement work done nationally by the U.S. Census Bureau to reach those households most likely to be missed because of barriers, operational or motivational, preventing people from filling out the census. The Campaign, which began in 2017, included key phases, titled Educate, Motivate and Activate. Each of these phases were designed to make sure all Californians knew about the census, how to respond, their information was safe and their participation would help their communities for the next 10 years.
Facebook
Twitter2020 Census P.L. 94-171 is the first detailed data release from the 2020 Decennial Census of Population and Housing. The web layer is based on an extract for Table P1 – Race at the place level geography of Broward County, Florida. The data extract was then joined to the 2020 Census TIGER/Line Shapefiles.
For details on field names, table hierarchy, and table contents refer to TABLE (MATRIX) SECTION in Chapter 6. Data Dictionary, https://www2.census.gov/programs-surveys/decennial/2020/technical-documentation/complete-tech-docs/summary-file/2020Census_PL94_171Redistricting_StatesTechDoc_English.pdf" STYLE="text-decoration:underline;">2020 Census State Public Law 94-171 Summary File Technical Documentation.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, access the 2020 Census Detailed Demographic and Housing Characteristics File B (Detailed DHC-B) Technical Documentation..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, access Improvements to the 2020 Census Race and Hispanic Origin Question Designs, Data Processing, and Coding Procedures..To protect respondent confidentiality, data have undergone disclosure avoidance methods which add "statistical noise" - small, random additions or subtractions - to the data so that no one can reliably link the published data to a specific person or household. As a result, data users may observe implausible and improbable data within this data product and compared with other 2020 Census data products. For more information, access the 2020 Census Detailed Demographic and Housing Characteristics File B (Detailed DHC-B) Technical Documentation..Aggregating data, such as household counts and geographies, diminishes accuracy and increases the likelihood of inconsistent and improbable results. For guidance on creating custom aggregations, access the 2020 Census Detailed Demographic and Housing Characteristics File B (Detailed DHC-B) Technical Documentation..Counts showing an "X" are suppressed for one of two reasons: (1) the count was negative or (2) it is an alone count larger than its equivalent alone or in any combination count. If the suppressed count is an alone count, data users should use the equivalent alone in any combination count, if it is available..This racial or ethnic group has data available for eight household type categories. For more information on the minimum population counts and accuracy, access the 2020 Census Detailed Demographic and Housing Characteristics File B (Detailed DHC-B) Technical Documentation..Washington, D.C. and American Indian/Alaska Native/Native Hawaiian (AIANNH) areas may show data when there should not be any displayed. This is due to postprocessing to ensure counts for statistically equivalent and coterminous geographies are consistent. For more information, access the 2020 Census Detailed Demographic and Housing Characteristics File B (Detailed DHC-B) Technical Documentation..Source: U.S. Census Bureau, 2020 Census Detailed Demographic and Housing Characteristics File B (Detailed DHC-B)
Facebook
TwitterA census tract is a geographic area defined by the U.S. Census Bureau for the purpose of collecting and analyzing demographic data. Typically, a census tract contains a population of about 1,200 to 8,000 people and is designed to reflect homogenous social and economic characteristics. Tracts are used in various statistical analyses and are updated every ten years with the decennial census, allowing for a detailed understanding of population trends, housing, and economic conditions within specific communities. These files do not include demographic data, but they contain geographic entity codes that can be linked to the Census Bureau’s demographic data, available on https://data.census.gov. Terms of Use This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries. This product has been produced by the US Census for the sole purpose of geographic reference. No warranty is made by the City of Austin regarding specific accuracy or completeness.
Facebook
TwitterThis layer shows total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Tribal Subdivision, Tribal Census Tract, Tribal Block Group, Alaska Native Regional Corporation, American Indian, Alaska Native, or Native Hawaiian Area boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Tribal Subdivision, Tribal Census Tract, Tribal Block Group, Alaska Native Regional Corporation, American Indian Alaska Native Native Hawaiian AreaNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, visit the 2020 Census Demographic and Housing Characteristics File (DHC) Technical Documentation webpage..To protect respondent confidentiality, data have undergone disclosure avoidance methods which add "statistical noise" - small, random additions or subtractions - to the data so that no one can reliably link the published data to a specific person or household. The Census Bureau encourages data users to aggregate small populations and geographies to improve accuracy and diminish implausible results..An "(X)" means not applicable..An "-" means the statistic could not be computed because there were an insufficient number of observations..[1] The alone or in combination categories are tallies of responses rather than respondents. That is, the alone or in combination categories are not mutually exclusive. Individuals who reported two races were counted in two separate and distinct alone or in combination race categories, while those who reported three races were counted in three categories, and so on. For example, a respondent who indicated "White and Black or African American" was counted in the White alone or in combination category as well as in the Black or African American alone or in combination category. Consequently, the sum of all alone or in combination categories equals the number of races reported (i.e., responses), which exceeds the total population..[2] "Child" includes biological, adopted, and stepchildren of the householder..[3] "Own children" includes biological, adopted, and stepchildren of the householder..[4] The homeowner vacancy rate is the proportion of the homeowner inventory that is vacant "for sale." It is computed by dividing the total number of vacant units "for sale only" by the sum of owner-occupied units, vacant units that are "for sale only," and vacant units that have been sold but not yet occupied; and then multiplying by 100..[5] The rental vacancy rate is the proportion of the rental inventory that is vacant "for rent." It is computed by dividing the total number of vacant units "for rent" by the sum of the renter-occupied units, vacant units that are "for rent," and vacant units that have been rented but not yet occupied; and then multiplying by 100..Source: U.S. Census Bureau, 2020 Census Demographic Profile