According to exit polling in ten key states of the 2024 presidential election in the United States, Donald Trump received the most support from white voters between the ages of ** and **. In comparison, ** percent of Black voters between the ages of ** and ** reported voting for Kamala Harris.
According to exit polling in ten key states of the 2024 presidential election in the United States, ** percent of surveyed white voters reported voting for Donald Trump. In contrast, ** percent of Black voters reported voting for Kamala Harris.
According to exit polling in ten key states of the 2024 presidential election in the United States, Donald Trump received the most support from men between the ages of ** and **. In comparison, ** percent of women between the ages of ** and ** reported voting for Kamala Harris.
According to exit polling in ten key states of the 2024 presidential election in the United States, almost two-thirds of voters who had never attended college reported voting for Donald Trump. In comparison, a similar share of voters with advanced degrees reported voting for Kamala Harris.
During the weeks leading up to the presidential election, early voting began in almost all states, with over ** million ballots being cast nationally as of Election Day. Although ** percent of mail-in and early in-person votes were cast by voters aged 65 or older, ** percent of those aged 18 to 29 years old voted early.
The L2 Voter and Demographic Dataset includes demographic and voter history tables for all 50 states and the District of Columbia. The dataset is built from publicly available government records about voter registration and election participation. These records indicate whether a person voted in an election or not, but they do not record whom that person voted for. Voter registration and election participation data are augmented by demographic information from outside data sources.
The L2 Voter and Demographic Dataset is current as of April 7 2025.
To create this file, L2 processes registered voter data on an ongoing basis for all 50 states and the District of Columbia, with refreshes of the underlying state voter data typically at least every six months and refreshes of telephone numbers and National Change of Address processing approximately every 30 to 60 days. These data are standardized and enhanced with propriety commercial data and modeling codes and consist of approximately 185,000,000 records nationwide.
For each state, there are two available tables: demographic and voter history. The demographic and voter tables can be joined on the LALVOTERID
variable. One can also use the LALVOTERID
variable to link the L2 Voter and Demographic Dataset with the L2 Consumer Dataset.
In addition, the LALVOTERID
variable can be used to validate the state. For example, let's look at the LALVOTERID = LALCA3169443
. The characters in the fourth and fifth positions of this identifier are 'CA' (California). The second way to validate the state is by using the RESIDENCE_ADDRESSES_STATE
variable, which should have a value of 'CA' (California).
The date appended to each table name represents when the data was last updated. These dates will differ state by state because states update their voter files at different cadences.
The demographic files use 698 consistent variables. For more information about these variables, see 2025-01-10-VM2-File-Layout.xlsx.
The voter history files have different variables depending on the state. The ***2025-04-07-L2-Voter-Dictionaries.tar.gz file contains .csv data dictionaries for each state's demographic and voter files. While the demographic file data dictionaries should mirror the 2025-01-10-VM2-File-Layout.xlsx*** file, the voter file data dictionaries will be unique to each state.
***2025-01-10-National-File-Notes.pdf ***contains L2 Voter and Demographic Dataset ("National File") release notes from 2018 to 2025.
***2025-04-07-L2-Voter-Fill-Rate.tar.gz ***contains .tab files tracking the percent of non-null values for any given field.
Data access is required to view this section.
Data access is required to view this section.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: This repository contains the full dataset and model implementation for the analysis of voting patterns in Romania's 2024 presidential elections, focusing on the relationship between territorial economic structures and electoral preferences. The models estimate vote dominance at LAU level using sectoral, demographic, and regional predictors, including spatial autoregression. Particular attention is given to the overrepresentation of Bucharest in national-level FDI statistics, which is corrected through a GDP-based imputation model. For reproducibility, the repository includes: Cleaned and structured input data (LAU, NUTS3), all modelling scripts in R, Tableau maps for visual analysis and public presentation.File DescriptionsLAU.csvThis dataset contains the local-level electoral and socio-economic data for all Romanian LAU2 units used in the spatial and statistical analyses. The file is used as the base for all models and includes identifiers for merging with the shapefile or spatial weights. It includes:- Electoral results by presidential candidate (2024, simulated),- Dominant vote type per locality,- Sectoral employment categories,- Demographic variables (ethnicity, education, age),- Regional and metropolitan classifications,- Weights for modelling.NUTS3.csvThis dataset provides county-level economic indicators (GDP and FDI) over the period 2011–2022. The file supports the construction of regional indicators such as FDI-to-GDP ratios and export structure. Notably, the file includes both original and corrected values of FDI for Bucharest, following the imputation procedure described in the model script.model.RThis R script contains the full modelling pipeline. The script includes both a model variant with Bucharest excluded and an alternative version using corrected FDI values, confirming the robustness of coefficients across specifications. It includes:- Pre-processing of LAU and NUTS3 data,- Imputation of Bucharest FDI using a linear model on GDP,- Survey-weighted logistic regression models for vote dominance per candidate,- Multinomial and hierarchical logistic models,- Seemingly Unrelated Regressions (SUR),- Spatial error models (SEM),- Principal Component Analysis on SEM residuals,- Latent dominance prediction using softmax transformation,- Export of predicted latent vote maps.Maps.twbxThis Tableau workbook contains all final cartographic representations.The workbook uses a consistent colour palette based on candidate-typified economic structures (industry, services, agriculture, shrinking).- Choropleth maps of dominant vote by candidate,- Gradients reflecting latent probabilities from spatial models,- Maps of residuals and ideological factor scores (PCA-derived),- Sectoral economic geographies per county and per locality,- Overlay of dominant vote and sectoral transformation types.
According to results on November 6, 2024, former President Donald Trump had received *** Electoral College votes in the race to become the next President of the United States, securing him the presidency. With all states counted, Trump received a total of *** electoral votes. Candidates need *** votes to become the next President of the United States.
According to a 2023 survey of young adults in the United States, just over half of Americans between 18 and 24 years old were planning on voting in the 2024 presidential election. The likelihood among those between the ages of 25 and 34 was only slightly greater.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Some racial and ethnic categories are suppressed to avoid misleading estimates when the relative standard error exceeds 30%. Margins of error are estimated at the 90% confidence level.
Data Source: Current Population Survey (CPS) Voting Supplement, 2020
Why This Matters
Voting is one of the primary ways residents can have their voices heard by the government. By voting for elected officials and on ballot initiatives, residents help decide the future of their community.
For much of our nation’s history, non-white residents were explicitly prohibited from voting or discriminated against in the voting process. It was not until the Voting Rights Act of 1965 that the Federal Government enacted voting rights protections for Black voters and voters of color.
Nationally, BIPOC citizens and especially Hispanic and Asian citizens have consistently lower voter turnout rates and voter registration rates. While local DC efforts have been taken to remove these barriers, restrictive voter ID requirements and the disenfranchisement of incarcerated and returning residents act as institutionally racist barriers to voting in many jurisdictions.
The District's Response
The DC Board of Elections has lowered the barriers to participate in local elections through online voter registration, same day registration, voting by mail, and non-ID proof of residence.
Unlike in many states, incarcerated and returning residents in D.C. never lose the right to vote. Since 2024, DC has also extended the right to vote in local elections to residents of the District who are not citizens of the U.S.
Although DC residents pay federal taxes and can vote in the presidential election, the District does not have full representation in Congress. Efforts to advocate for DC statehood aim to remedy this.
According to exit polling in ten key states of the 2024 presidential election in the United States, ** percent of surveyed women reported voting for Kamala Harris. In the race to become the next President of the United States, ** percent of men reported voting for Donald Trump.
Voting data for the November 2024 election in Roanoke County, Virginia, by voting district. Includes presidential, Senate, House of Representatives, and Town of Vinton results. Data from here.
The table GA-Demographic-2025-03-27 is part of the dataset L2 Voter and Demographic Dataset, available at https://redivis.com/datasets/t6qv-ad1vt3wqf. It contains 7723798 rows across 698 variables.
2024 November election map for Roanoke County, with a splash screen added, for Roanoke County demographics website.
2024 General Election: Trump vs. Biden | RealClearPolling
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Electoral registrations for parliamentary and local government elections as recorded in electoral registers for England, Wales, Scotland and Northern Ireland.
The table ID-Demographic-2025-03-27 is part of the dataset L2 Voter and Demographic Dataset, available at https://redivis.com/datasets/t6qv-ad1vt3wqf. It contains 982662 rows across 698 variables.
The table ME-Demographic-2025-03-05 is part of the dataset L2 Voter and Demographic Dataset, available at https://redivis.com/datasets/t6qv-ad1vt3wqf. It contains 2226632 rows across 698 variables.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set consists of all Fulton County Election results from April 2012 to present. Included with each record is the race, candidate, precinct, number of election day votes, number of absentee by mail votes, number of advance in person votes, number of provisional votes, total number of votes, name of election, and date of election. This data set is updated after each election.
The table MA-Demographic-2025-02-26 is part of the dataset L2 Voter and Demographic Dataset, available at https://redivis.com/datasets/t6qv-ad1vt3wqf. It contains 9654350 rows across 698 variables.
According to exit polling in ten key states of the 2024 presidential election in the United States, Donald Trump received the most support from white voters between the ages of ** and **. In comparison, ** percent of Black voters between the ages of ** and ** reported voting for Kamala Harris.