72 datasets found
  1. l

    Covid-19 - Mortality within 28 days of diagnosis

    • data.leicester.gov.uk
    csv, excel, json
    Updated Apr 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Covid-19 - Mortality within 28 days of diagnosis [Dataset]. https://data.leicester.gov.uk/explore/dataset/covid-19-mortality-within-28-days-of-diagnosis/
    Explore at:
    csv, json, excelAvailable download formats
    Dataset updated
    Apr 16, 2024
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The number of deaths, based on a 7-day rolling sum of deaths recorded where a diagnosis of Covid-19 within 28 days of the date of death has been recorded.Please note automatic updates to this dataset was discontinued on 3rd July 2023.

  2. a

    COVID-19 Trends in Each Country-Copy

    • hub.arcgis.com
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  3. Estimated excess mortality (excluding COVID-19) during heat-periods, England...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Estimated excess mortality (excluding COVID-19) during heat-periods, England (UKHSA) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/estimatedexcessmortalityexcludingcovid19duringheatperiodsenglandukhsa
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 7, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England
    Description

    Provisional data on excess mortality (excluding COVID-19) during heat-periods in the 65 years and over age group estimates in England, including the estimated number of deaths where the death occurred within 28 days of a positive COVID-19 result and the mean central England temperature.

  4. Random effects design at the department level on the effect of contact...

    • plos.figshare.com
    xls
    Updated Jun 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andres I. Vecino-Ortiz; Juliana Villanueva Congote; Silvana Zapata Bedoya; Zulma M. Cucunuba (2023). Random effects design at the department level on the effect of contact tracing on COVID-19 mortality. [Dataset]. http://doi.org/10.1371/journal.pone.0246987.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Andres I. Vecino-Ortiz; Juliana Villanueva Congote; Silvana Zapata Bedoya; Zulma M. Cucunuba
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Random effects design at the department level on the effect of contact tracing on COVID-19 mortality.

  5. COVID-19 Trends in Each Country

    • coronavirus-disasterresponse.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  6. UK daily COVID data - countries and regions

    • kaggle.com
    zip
    Updated Mar 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alberto Vidal (2024). UK daily COVID data - countries and regions [Dataset]. https://www.kaggle.com/datasets/albertovidalrod/uk-daily-covid-data-countries-and-regions
    Explore at:
    zip(1177117 bytes)Available download formats
    Dataset updated
    Mar 26, 2024
    Authors
    Alberto Vidal
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Dataset description

    Daily official UK Covid data. The data is available per country (England, Scotland, Wales and Northern Ireland) and for different regions in England. The different regions are split into two different files as part of the data is directly gathered by the NHS (National Health Service). The files that contain the word 'nhsregion' in their name, include data related to hospitals only, such as number of admissions or number of people in respirators. The files containing the word 'region' in their name, include the rest of the data, such as number of cases, number of vaccinated people or number of tests performed per day. The next paragraphs describe the columns for the different file types.

    Region files

    Files related to regions (word 'region' included in the file name) have the following columns: - "date": date in YYYY-MM-DD format - "area type": type of area covered in the file (region or nation) - "area name": name of area covered in the file (region or nation name) - "daily cases": new cases on a given date - "cum cases": cumulative cases - "new deaths 28days": new deaths within 28 days of a positive test - "cum deaths 28days": cumulative deaths within 28 days of a positive test - "new deaths_60days": new deaths within 60 days of a positive test - "cum deaths 60days": cumulative deaths within 60 days of a positive test - "new_first_episode": new first episodes by date - "cum_first_episode": cumulative first episodes by date - "new_reinfections": new reinfections by specimen data - "cum_reinfections": cumualtive reinfections by specimen data - "new_virus_test": new virus tests by date - "cum_virus_test": cumulative virus tests by date - "new_pcr_test": new PCR tests by date - "cum_pcr_test": cumulative PCR tests by date - "new_lfd_test": new LFD tests by date - "cum_lfd_test": cumulative LFD tests by date - "test_roll_pos_pct": percentage of unique case positivity by date rolling sum - "test_roll_people": unique people tested by date rolling sum - "new first dose": new people vaccinated with a first dose - "cum first dose": cumulative people vaccinated with a first dose - "new second dose": new people vaccinated with a first dose - "cum second dose": cumulative people vaccinated with a first dose - "new third dose": new people vaccinated with a booster or third dose - "cum third dose": cumulative people vaccinated with a booster or third dose

    Country files

    Files related to countries (England, Northern Ireland, Scotland and Wales) have the above columns and also: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max

    NHS Region files

    Files related to nhsregion (word 'nhsregion' included in the file name) have the following columns: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max

    It's worth noting that the dataset hasn't been cleaned and it needs cleaning. Also, different files have different null columns. This isn't an error in the dataset but the way different countries and regions report the data.

  7. o

    Deaths Involving COVID-19 by Fatality Type

    • data.ontario.ca
    • datasets.ai
    • +3more
    csv, xlsx
    Updated Dec 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health (2024). Deaths Involving COVID-19 by Fatality Type [Dataset]. https://data.ontario.ca/dataset/deaths-involving-covid-19-by-fatality-type
    Explore at:
    xlsx(10965), xlsx(11076), csv(34979)Available download formats
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Health
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Nov 14, 2024
    Area covered
    Ontario
    Description

    This dataset reports the daily reported number of deaths involving COVID-19 by fatality type.

    Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak.

    Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool

    Data includes:

    • Date on which the death occurred
    • Total number of deaths involving COVID-19
    • Number of deaths with “COVID-19 as the underlying cause of death”
    • Number of deaths with “COVID-19 contributed but not underlying cause”
    • Number of deaths where the “Cause of death unknown” or “Cause of death missing”

    Additional Notes

    The method used to count COVID-19 deaths has changed, effective December 1, 2022. Prior to December 1 2022, deaths were counted based on the date the death was updated in the public health unit’s system. Going forward, deaths are counted on the date they occurred.

    On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023.

    CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.

    As of December 1, 2022, data are based on the date on which the death occurred. This reporting method differs from the prior method which is based on net change in COVID-19 deaths reported day over day.

    Data are based on net change in COVID-19 deaths for which COVID-19 caused the death reported day over day. Deaths are not reported by the date on which death happened as reporting may include deaths that happened on previous dates.

    Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts.

    Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different.

    Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the number of deaths involving COVID-19 reported.

    "_Cause of death unknown_" is the category of death for COVID-19 positive individuals with cause of death still under investigation, or for which the public health unit was unable to determine cause of death. The category may change later when the cause of death is confirmed either as “COVID-19 as the underlying cause of death”, “COVID-19 contributed but not underlying cause,” or “COVID-19 unrelated”.

    "_Cause of death missing_" is the category of death for COVID-19 positive individuals with the cause of death missing in CCM.

    Rates for the most recent days are subject to reporting lags

    All data reflects totals from 8 p.m. the previous day.

    This dataset is subject to change.

  8. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  9. e

    Data from: Coronavirus (COVID-19) Deaths

    • data.europa.eu
    • ckan.publishing.service.gov.uk
    Updated Apr 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2020). Coronavirus (COVID-19) Deaths [Dataset]. https://data.europa.eu/data/datasets/coronavirus-covid-19-deaths1?locale=de
    Explore at:
    Dataset updated
    Apr 9, 2020
    Dataset authored and provided by
    Greater London Authority
    Description

    Due to changes in the collection and availability of data on COVID-19 this page will no longer be updated. The webpage will no longer be available as of 11 May 2023. On-going, reliable sources of data for COVID-19 are available via the COVID-19 dashboard, Office for National Statistics, and the UKHSA

    This page provides a weekly summary of data on deaths related to COVID-19 published by NHS England and the Office for National Statistics. More frequent reporting on COVID-19 deaths is now available here, alongside data on cases, hospitalisations, and vaccinations. This update contains data on deaths related to COVID-19 from:

    NHS England COVID-19 Daily Deaths - last updated on 28 June 2022 with data up to and including 27 June 2022.
    
    
    ONS weekly deaths by Local Authority - last updated on 16 August 2022 with data up to and including 05 August 2022.
    

    Summary notes about each these sources are provided at the end of this document.

    Note on interpreting deaths data: statistics from the available sources differ in definition, timing and completeness. It is important to understand these differences when interpreting the data or comparing between sources.

    Weekly Key Points

    An additional 24 deaths in London hospitals of patients who had tested positive for COVID-19 and an additional 5 where COVID-19 was mentioned on the death certificate were announced in the week ending 27 June 2022. This compares with 40 and 3 for the previous week. A total of 306 deaths in hospitals of patients who had tested positive for COVID-19 and 27 where COVID-19 was mentioned on the death certificate were announced for England as whole. This compares with 301 and 26 for the previous week. The total number of COVID-19 deaths reported in London hospitals of patients who had tested positive for COVID-19 is now 19,102. The total number of deaths in London hospitals where COVID-19 was mentioned on the death certificate is now 1,590. This compares to figures of 119,237 and 8,197 for English hospitals as a whole. Due to the delay between death occurrence and reporting, the estimated number of deaths to this point will be revised upwards over coming days These figures do not include deaths that occurred outside of hospitals. Data from ONS has indicated that the majority (79%) of COVID-19 deaths in London have taken place in hospitals.

    Recently announced deaths in Hospitals

    21 June 22 June 23 June 24 June 25 June 26 June 27 June London No positive test 0 0 1 4 0 0 0 London Positive test 3 7 2 10 0 0 2 Rest of England No positive test 2 6 4 4 0 0 6 Rest of England Positive test 47 49 41 58 6 0 81

    16 May 23 May 30 May 06 June 13 June 20 June 27 June London No positive test 14 3 4 0 4 3 5 London Positive test 45 34 55 20 62 40 24 Rest of England No positive test 41 58 33 23 47 23 22 Rest of England Positive test 456 375 266 218 254 261 282 Deaths by date of occurrence

    21 June 22 June 23 June 24 June 25 June 26 June 27 June London 20,683 20,686 20,690 20,691 20,692 20,692 20,692 Rest of England 106,604 106,635 106,679 106,697 106,713 106,733 106,742 Interpreting the data The data published by NHS England are incomplete due to:

    delays in the occurrence and subsequent reporting of deaths deaths occurring outside of hospitals not being included

    The total deaths reported up to a given point are therefore less than the actual number that have occurred by the same point. Delays in reporting NHS provide the following guidance regarding the delay between occurrence and reporting of deaths: Confirmation of COVID-19 diagnosis, death notification and reporting in central figures can take up to several days and the hospitals providing the data are under significant operational pressure. This means that the totals reported at 5pm on each day may not include all deaths that occurred on that day or on recent prior days. The data published by NHS England for reporting periods from April 1st onward includes both date of occurrence and date of reporting and so it is possible to illustrate the distribution of these reporting delays. This data shows that approximately 10% of COVID-19 deaths occurring in London hospitals are included in the reporting period ending on the same day, and that approximately two-thirds of deaths were reported by two days after the date of occurrence.

    Deaths outside of hospitals The data published by NHS England does not include deaths that occur outside of hospitals, i.e. those in homes, hospices, and care homes. ONS have published data for deaths by place of occurrence. This shows that, up to 05 August, 79% of deaths in London recorded as involving COVID-19 occurred in hospitals (this compares with 44% for all causes of death). This would suggest that the NHS England data may underestimate overall deaths from COVID-19 by around 20%.

    Comparison of data sources

    Note on data sources

    NHS England provides numbers of patients who have died in hos

  10. d

    MD COVID-19 - Confirmed Deaths by County

    • catalog.data.gov
    • opendata.maryland.gov
    • +3more
    Updated Oct 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2025). MD COVID-19 - Confirmed Deaths by County [Dataset]. https://catalog.data.gov/dataset/md-covid-19-confirmed-deaths-by-county
    Explore at:
    Dataset updated
    Oct 18, 2025
    Dataset provided by
    opendata.maryland.gov
    Area covered
    Maryland
    Description

    Note: Note: Starting October 10th, 2025 this dataset is deprecated and is no longer being updated. As of April 27, 2023 updates changed from daily to weekly. Summary The cumulative number of confirmed COVID-19 deaths among Maryland residents within a single Maryland jurisdiction. Description The MD COVID-19 - Confirmed Deaths by County data layer is a collection of the statewide confirmed COVID-19 related deaths that have been reported each day by the Vital Statistics Administration that have occurred in each Maryland jurisdiction. A death is classified as confirmed if the person had a laboratory-confirmed positive COVID-19 test result. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. This data layer does not include probable deaths. Probable deaths are available from the MD COVID-19 - Probable Deaths by County data layer. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  11. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138

  12. covid_us_states

    • redivis.com
    Updated Sep 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Redivis Demo Organization (2025). covid_us_states [Dataset]. https://redivis.com/datasets/28ec-fsftysdhj
    Explore at:
    Dataset updated
    Sep 1, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Redivis Demo Organization
    Time period covered
    Jan 21, 2020 - Feb 16, 2021
    Area covered
    United States
    Description

    Cumulative cases and deaths by date, by US state

    The table covid_us_states is part of the dataset NYT COVID US Cases & Deaths, available at https://redivis.com/datasets/28ec-fsftysdhj. It contains 19319 rows across 5 variables.

  13. COVID-19 WEEKLY TRENDS IN EUROPE

    • kaggle.com
    zip
    Updated Mar 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arya krishnan A R (2022). COVID-19 WEEKLY TRENDS IN EUROPE [Dataset]. https://www.kaggle.com/datasets/aryakrishnanar/covid19-weekly-trends-in-europe
    Explore at:
    zip(3459 bytes)Available download formats
    Dataset updated
    Mar 28, 2022
    Authors
    Arya krishnan A R
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    Europe
    Description

    Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. The disease has since spread worldwide, leading to an ongoing pandemic.

    This Dataset contains Weekly trends of COVID-19 in different regions of Europe as on March 28, 2022.

    Attributes

    Country/Other - Country/Other regions in Europe Cases in the last 7 days - No. of cases in the last 7 days Cases in the preceding 7 days- No. of cases in the preceding 7 days Weekly Case % Change - Weekly change of cases in percentage Cases in the last 7 days/1M pop - Cases in the last 7 days per 1 million population Deaths in the last 7 days - no of deaths in last 7 days Deaths in the preceding 7 days - no of deaths in preceding 7 days Weekly Death % Change - weekly change of deaths in percentage Deaths in the last 7 days/1M pop - Deaths in the last 7 days per 1 million population Population - Population of the region

    Source:

    https://www.worldometers.info/coronavirus/weekly-trends/#weekly_table

  14. Coronavirus England briefing, 11 February 2021

    • gov.uk
    • s3.amazonaws.com
    Updated Feb 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Social Care (2021). Coronavirus England briefing, 11 February 2021 [Dataset]. https://www.gov.uk/government/publications/coronavirus-england-briefing-11-february-2021
    Explore at:
    Dataset updated
    Feb 11, 2021
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department of Health and Social Care
    Description

    The data includes:

    • case rate per 100,000 population

    • case rate per 100,000 population aged 60 years and over

    • percentage change in case rate per 100,000 from previous week

    • percentage of individuals tested positive

    • number of individuals tested per 100,000

    • number of deaths within 28 days of positive COVID-19 test

    • NHS pressures by Sustainability and Transformation Partnership (STP)

    See the detailed data on https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/">hospital activity.

    See the https://coronavirus.data.gov.uk/?_ga=2.108721154.1297948817.1612958412-1961839927.1610968060">detailed data on the progress of the coronavirus pandemic. This includes the number of people testing positive, case rates and deaths within 28 days of positive test by upper tier local authority.

    See the latest lower-tier local authority watchlist. This includes epidemiological charts containing case numbers, case rates, persons tested and positivity at lower-tier local authority level.

  15. covid_us_counties

    • redivis.com
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Redivis Demo Organization (2025). covid_us_counties [Dataset]. https://redivis.com/datasets/28ec-fsftysdhj
    Explore at:
    Dataset updated
    Sep 1, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Redivis Demo Organization
    Time period covered
    Jan 21, 2020 - Feb 16, 2021
    Area covered
    United States
    Description

    Cumulative cases and deaths by date, by county

    The table covid_us_counties is part of the dataset NYT COVID US Cases & Deaths, available at https://redivis.com/datasets/28ec-fsftysdhj. It contains 1037276 rows across 6 variables.

  16. f

    Data_Sheet_1_The Association of an Alpha-2 Adrenergic Receptor Agonist and...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Jan 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Balk, Robert A.; Kishen, Ekta B.; Hamilton, John L.; Vashi, Mona; Wimmer, Markus A.; Fogg, Louis F. (2022). Data_Sheet_1_The Association of an Alpha-2 Adrenergic Receptor Agonist and Mortality in Patients With COVID-19.docx [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000443024
    Explore at:
    Dataset updated
    Jan 4, 2022
    Authors
    Balk, Robert A.; Kishen, Ekta B.; Hamilton, John L.; Vashi, Mona; Wimmer, Markus A.; Fogg, Louis F.
    Description

    There is a need for treatments to reduce coronavirus disease 2019 (COVID-19) mortality. Alpha-2 adrenergic receptor (α2 AR) agonists can dampen immune cell and inflammatory responses as well as improve oxygenation through physiologic respiratory parameters. Therefore, α2 AR agonists may be effective in reducing mortality related to hyperinflammation and acute respiratory failure in COVID-19. Dexmedetomidine (DEX) is an α2 AR agonist used for sedation. We performed a retrospective analysis of adults at Rush University System for Health hospitals between March 1, 2020 and July 30, 2020 with COVID-19 requiring invasive mechanical ventilation and sedation (n = 214). We evaluated the association of DEX use and 28-day mortality from time of intubation. Overall, 28-day mortality in the cohort receiving DEX was 27.0% as compared to 64.5% in the cohort that did not receive DEX (relative risk reduction 58.2%; 95% CI 42.4–69.6). Use of DEX was associated with reduced 28-day mortality on multivariable Cox regression analysis (aHR 0.19; 95% CI 0.10–0.33; p < 0.001). Adjusting for time-varying exposure to DEX also demonstrated that DEX was associated with reduced 28-day mortality (aHR 0.51; 95% CI 0.28–0.95; p = 0.03). Earlier DEX use, initiated <3.4 days from intubation, was associated with reduced 28-day mortality (aHR 0.25; 95% CI 0.13–0.50; p < 0.001) while later DEX use was not (aHR 0.64; 95% CI 0.27–1.50; p = 0.30). These results suggest an α2 AR agonist might reduce mortality in patients with COVID-19. Randomized controlled trials are needed to confirm this observation.

  17. f

    Data_Sheet_1_Red Cell Distribution Width Upon Hospital Admission Predicts...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Mar 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jäger, Bernhard; Ahmed, Amro; Funk, Georg-Christian; Huber, Kurt; Fasching, Peter; Gschwantler, Michael; Aicher, Gabriele; Kaufmann, Christoph C.; Spiel, Alexander O.; Brunner, Ulrich; Equiluz-Bruck, Susanne (2021). Data_Sheet_1_Red Cell Distribution Width Upon Hospital Admission Predicts Short-Term Mortality in Hospitalized Patients With COVID-19: A Single-Center Experience.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000749587
    Explore at:
    Dataset updated
    Mar 18, 2021
    Authors
    Jäger, Bernhard; Ahmed, Amro; Funk, Georg-Christian; Huber, Kurt; Fasching, Peter; Gschwantler, Michael; Aicher, Gabriele; Kaufmann, Christoph C.; Spiel, Alexander O.; Brunner, Ulrich; Equiluz-Bruck, Susanne
    Description

    Background: Coronavirus disease (COVID-19) was first described at the end of 2019 in China and has since spread across the globe. Red cell distribution width (RDW) is a potent prognostic marker in several medical conditions and has recently been suggested to be of prognostic value in COVID-19.Methods: This retrospective, observational study of consecutive patients with COVID-19 was conducted from March 12, 2020 to December 4, 2020 in the Wilhelminenhospital, Vienna, Austria. RDWlevels on admission were collected and tested for their predictive value of 28-day mortality.Results: A total of 423 eligible patients with COVID-19 were included in the final analyses and 15.4% died within 28 days (n = 65). Median levels of RDWwere significantly higher in non-survivors compared to survivors [14.6% (IQR, 13.7–16.3) vs. 13.4% (IQR, 12.7– 14.4), P < 0.001]. Increased RDW was a significant predictor of 28-day mortality [crude odds ratio (OR) 1.717, 95% confidence interval (CI) 1.462–2.017; P = < 0.001], independent of clinical confounders, comorbidities and established prognostic markers of COVID-19 (adjusted OR of the final model 1.368, 95% CI 1.126–1.662; P = 0.002). This association remained consistent upon sub-group analysis. Our study data also demonstrate that RDW levels upon admission for COVID-19 were similar to previously recorded, non-COVID-19 associated RDW levels [14.2% (IQR, 13.3–15.7) vs. 14.0% [IQR, 13.2–15.1]; P = 0.187].Conclusions: In this population, RDWwas a significant, independent prognostic marker of short-term mortality in patients with COVID-19.

  18. Independent predictors of 28-day mortality, as identifies with logistic...

    • plos.figshare.com
    • figshare.com
    xls
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martín R. Salazar; Soledad E. González; Lorena Regairaz; Noelia S. Ferrando; Verónica V. González Martínez; Patricia M. Carrera Ramos; Laura Muñoz; Santiago A. Pesci; Juan M. Vidal; Nicolás Kreplak; Elisa Estenssoro (2023). Independent predictors of 28-day mortality, as identifies with logistic regression. [Dataset]. http://doi.org/10.1371/journal.pone.0250386.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Martín R. Salazar; Soledad E. González; Lorena Regairaz; Noelia S. Ferrando; Verónica V. González Martínez; Patricia M. Carrera Ramos; Laura Muñoz; Santiago A. Pesci; Juan M. Vidal; Nicolás Kreplak; Elisa Estenssoro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Independent predictors of 28-day mortality, as identifies with logistic regression.

  19. COVID-19 World Vaccination Progress Data

    • kaggle.com
    zip
    Updated Jun 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fedesoriano (2021). COVID-19 World Vaccination Progress Data [Dataset]. https://www.kaggle.com/datasets/fedesoriano/coronavirus-covid19-vaccinations-data/data
    Explore at:
    zip(4832380 bytes)Available download formats
    Dataset updated
    Jun 29, 2021
    Authors
    fedesoriano
    Area covered
    World
    Description

    How many people have received a coronavirus vaccine?

    Tracking COVID-19 vaccination rates is crucial to understand the scale of protection against the virus, and how this is distributed across the global population.

    A global, aggregated database on COVID-19 vaccination rates is essential to monitor progress, but it is unfortunately not yet available. This dataset provides the last weekly update of vaccination rates.

    Last update

    June 2021

    Content

    Colums description: 1. iso_code: ISO 3166-1 alpha-3 – three-letter country codes 2. continent: Continent of the geographical location 3. location: Geographical location 4. date: Date of observation 5. total_cases: Total confirmed cases of COVID-19 6. new_cases: New confirmed cases of COVID-19 7. new_cases_smoothed: New confirmed cases of COVID-19 (7-day smoothed) 8. total_deaths: Total deaths attributed to COVID-19 9. new_deaths: New deaths attributed to COVID-19 10. new_deaths_smoothed: New deaths attributed to COVID-19 (7-day smoothed) 11. total_cases_per_million: Total confirmed cases of COVID-19 per 1,000,000 people 12. new_cases_per_million: New confirmed cases of COVID-19 per 1,000,000 people 13. new_cases_smoothed_per_million: New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people 14. total_deaths_per_million: Total deaths attributed to COVID-19 per 1,000,000 people 15. new_deaths_per_million: New deaths attributed to COVID-19 per 1,000,000 people 16. new_deaths_smoothed_per_million: New deaths attributed to COVID-19 (7-day smoothed) per 1,000,000 people 17. reproduction_rate: Real-time estimate of the effective reproduction rate (R) of COVID-19. See http://trackingr-env.eba-9muars8y.us-east-2.elasticbeanstalk.com/FAQ 18. icu_patients: Number of COVID-19 patients in intensive care units (ICUs) on a given day 19. icu_patients_per_million: Number of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people 20. hosp_patients: Number of COVID-19 patients in hospital on a given day 21. hosp_patients_per_million: Number of COVID-19 patients in hospital on a given day per 1,000,000 people 22. weekly_icu_admissions: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week 23. weekly_icu_admissions_per_million: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people 24. weekly_hosp_admissions: Number of COVID-19 patients newly admitted to hospitals in a given week 25. weekly_hosp_admissions_per_million: Number of COVID-19 patients newly admitted to hospitals in a given week per 1,000,000 people 26. total_tests: Total tests for COVID-19 27. new_tests: New tests for COVID-19 28. new_tests_smoothed: New tests for COVID-19 (7-day smoothed). For countries that don't report testing data on a daily basis, we assume that testing changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window 29. total_tests_per_thousand: Total tests for COVID-19 per 1,000 people 30. new_tests_per_thousand: New tests for COVID-19 per 1,000 people 31. new_tests_smoothed_per_thousand: New tests for COVID-19 (7-day smoothed) per 1,000 people 32. tests_per_case: Tests conducted per new confirmed case of COVID-19, given as a rolling 7-day average (this is the inverse of positive_rate) 33. positive_rate: The share of COVID-19 tests that are positive, given as a rolling 7-day average (this is the inverse of tests_per_case) 34. tests_units: Units used by the location to report its testing data 35. total_vaccinations: Number of COVID-19 vaccination doses administered 36. total_vaccinations_per_hundred: Number of COVID-19 vaccination doses administered per 100 people 37. stringency_index: Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest response) 38. population: Population in 2020 39. population_density: Number of people divided by land area, measured in square kilometers, most recent year available 40. median_age: Median age of the population, UN projection for 2020 41. aged_65_older: Share of the population that is 65 years and older, most recent year available 42. aged_70_older: Share of the population that is 70 years and older in 2015 43. gdp_per_capita: Gross domestic product at purchasing power parity (constant 2011 international dollars), most recent year available 44. extreme_poverty: Share of the population living in extreme poverty, most recent year available since 2010 45. cardiovasc_death_rate: Death rate from cardiovascular disease in 2017 (annual number of deaths per 100,000 people) 46. diabetes_prevalence: Diabetes prevalence (% of population aged 20 to 79) in 2017 47. female...

  20. Daily monitoring of COVID-19 infections (NIJZ CNB)

    • data.europa.eu
    csv
    Updated Oct 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NACIONALNI INŠTITUT ZA JAVNO ZDRAVJE (2022). Daily monitoring of COVID-19 infections (NIJZ CNB) [Dataset]. https://data.europa.eu/88u/dataset/dnevno-spremljanje-okuzb-covid-19
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    National Institute of Public Healthhttps://www.nijz.si/sl
    Authors
    NACIONALNI INŠTITUT ZA JAVNO ZDRAVJE
    Description

    In accordance with the SARS-CoV-2 surveillance methodology, laboratory confirmed cases are covered with the date of the previous day. The number of reported cases of SARS-CoV-2 infection underestimates the number of real infections. Changing the number depends not only on changing the number of new infections, but also on changing testing recommendations and testing practices. Due to additional entries and verifications of data in the Infectious Diseases Record under the Health Care Databases Act (NIJZ 48 database), the data may be entered subsequently. As data are in a continuous process of collection and updating, the daily dynamics of data are therefore even more pronounced. From 1.2.2022 onwards, the time period is changed or the interval between two positive findings for SARS-CoV-2 infection is reduced from ≥ 90 to ≥ 45 days as a condition for re-recovery of the result in the NIJZ 48 database (re-infections). Since the start of surveillance for SARS-CoV-2 infections, the daily number of confirmed cases includes cases confirmed by PCR, and between 21.12.2020 and 12.2.2021 and 1.2.2022, the daily number of confirmed cases includes cases confirmed by PCR or HAGT.

    The National Institute of Public Health (NIJZ) monitors data on the number of deaths through the system of official declaration of death from infectious disease. The daily number of deaths with confirmed SARS-CoV-2 infection is one of the key indicators in the epidemiological surveillance of the COVID-19 epidemic. The official report of death under the Infectious Diseases Act is based on the clinical judgement of a doctor or coroner that an individual has died from COVID-19. In addition, the NIJZ monitors data on causes of death through the data source Medical Report on the deceased person. In order to keep up-to-date monitoring and reporting of deceased persons with confirmed SARS-CoV-2 infection, due to limitations such as incomplete data reporting, time lag in obtaining data, additional follow-up enquiries about the deceased, we have established an adapted method of monitoring the number of deaths.

    DEFINITIONS

    A confirmed case of SARS-COV-2 infection for the purpose of epidemiological surveillance of the number of confirmed persons with confirmed SARS-CoV-2 infection is:

    Person with SARS-CoV-2 nucleic acid present in a clinical specimen. OR A person who has a positive SARS-CoV-2 antigen in a clinical specimen.

    A deceased person with confirmed SARS-CoV-2 infection for the purpose of epidemiological surveillance of the number of deceased persons with confirmed SARS-CoV-2 infection is:

    death of a person with a confirmed SARS-CoV-2 infection occurring within 28 days after the date of positive SARS-CoV-2 testing OR death of a person who tested for SARS-CoV-2 positive post-mortem (after death) AND the date of death is recorded in the CRPP.* The last seven days is a period of greater uncertainty about the data of the deceased. The data source of the Infectious Diseases Record under the Health Care Databases Act (ZZPPZ) (Report of Disease-Deaths for Infectious Diseases) has been used for the last seven days, provided that the deceased is not recorded in the Central Patient Data Register (CRPP).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Covid-19 - Mortality within 28 days of diagnosis [Dataset]. https://data.leicester.gov.uk/explore/dataset/covid-19-mortality-within-28-days-of-diagnosis/

Covid-19 - Mortality within 28 days of diagnosis

Explore at:
csv, json, excelAvailable download formats
Dataset updated
Apr 16, 2024
License

Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically

Description

The number of deaths, based on a 7-day rolling sum of deaths recorded where a diagnosis of Covid-19 within 28 days of the date of death has been recorded.Please note automatic updates to this dataset was discontinued on 3rd July 2023.

Search
Clear search
Close search
Google apps
Main menu