100+ datasets found
  1. Countries with the largest population 2025

    • statista.com
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth

  2. Highest population density by country 2024

    • statista.com
    Updated Apr 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Highest population density by country 2021 [Dataset]. https://www.statista.com/statistics/264683/top-fifty-countries-with-the-highest-population-density/
    Explore at:
    Dataset updated
    Apr 25, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second smallest country, with an area of about two square kilometers, and its population only numbers around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer stands at about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase as well. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.

  3. Population in Africa 2024, by selected country

    • statista.com
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population in Africa 2024, by selected country [Dataset]. https://www.statista.com/statistics/1121246/population-in-africa-by-country/
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Africa
    Description

    Nigeria has the largest population in Africa. As of 2024, the country counted over 232.6 million individuals, whereas Ethiopia, which ranked second, has around 132 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 116 million people. In terms of inhabitants per square kilometer, Nigeria only ranks seventh, while Mauritius has the highest population density on the whole African continent. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.

  4. Largest countries in the world by area

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Largest countries in the world by area [Dataset]. https://www.statista.com/statistics/262955/largest-countries-in-the-world/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    World
    Description

    The statistic shows the 30 largest countries in the world by area. Russia is the largest country by far, with a total area of about 17 million square kilometers.

    Population of Russia

    Despite its large area, Russia - nowadays the largest country in the world - has a relatively small total population. However, its population is still rather large in numbers in comparison to those of other countries. In mid-2014, it was ranked ninth on a list of countries with the largest population, a ranking led by China with a population of over 1.37 billion people. In 2015, the estimated total population of Russia amounted to around 146 million people. The aforementioned low population density in Russia is a result of its vast landmass; in 2014, there were only around 8.78 inhabitants per square kilometer living in the country. Most of the Russian population lives in the nation’s capital and largest city, Moscow: In 2015, over 12 million people lived in the metropolis.

  5. T

    POPULATION by Country in AMERICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    POPULATION by Country in AMERICA [Dataset]. https://tradingeconomics.com/country-list/population?continent=america
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    United States
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. T

    POPULATION by Country in AFRICA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). POPULATION by Country in AFRICA [Dataset]. https://tradingeconomics.com/country-list/population?continent=africa
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Africa
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  7. Total population of Latin America and Caribbean countries 2022

    • statista.com
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Total population of Latin America and Caribbean countries 2022 [Dataset]. https://www.statista.com/statistics/988453/number-inhabitants-latin-america-caribbean-country/
    Explore at:
    Dataset updated
    Dec 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Latin America, Caribbean, Americas, LAC
    Description

    In 2023, it was estimated that approximately 664 million people lived in Latin America and the Caribbean. Brazil is the most populated country in the region, with an estimated 216.4 million inhabitants in that year, followed by Mexico with more than 128.5 million.

  8. G

    Population ages 65 and above by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Dec 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2024). Population ages 65 and above by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/elderly_population/
    Explore at:
    excel, xml, csvAvailable download formats
    Dataset updated
    Dec 19, 2024
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2023 based on 196 countries was 10.17 percent. The highest value was in Monaco: 36.36 percent and the lowest value was in Qatar: 1.57 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  9. a

    COVID-19 Trends in Each Country-Copy

    • census-unfpapdp.hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    • +2more
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://census-unfpapdp.hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  10. M

    World Population 1950-2025

    • macrotrends.net
    csv
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Population 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Chart and table of World population from 1950 to 2025. United Nations projections are also included through the year 2100.

  11. Countries with the highest number of internet users 2025

    • statista.com
    • flwrdeptvarieties.store
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest number of internet users 2025 [Dataset]. https://www.statista.com/statistics/262966/number-of-internet-users-in-selected-countries/
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    World
    Description

    As of February 2025, China ranked first among the countries with the most internet users worldwide. The world's most populated country had 1.11 billion internet users, more than triple the third-ranked United States, with just around 322 million internet users. Overall, all BRIC markets had over two billion internet users, accounting for four of the ten countries with more than 100 million internet users. Worldwide internet usage As of October 2024, there were more than five billion internet users worldwide. There are, however, stark differences in user distribution according to region. Eastern Asia is home to 1.34 billion internet users, while African and Middle Eastern regions had lower user figures. Moreover, the urban areas showed a higher percentage of internet access than rural areas. Internet use in China China ranks first in the list of countries with the most internet users. Due to its ongoing and fast-paced economic development and a cultural inclination towards technology, more than a billion of the estimated 1.4 billion population in China are online. As of the third quarter of 2023, around 87 percent of Chinese internet users stated using WeChat, the most popular social network in the country. On average, Chinese internet users spent five hours and 33 minutes online daily.

  12. COVID-19 Trends in Each Country

    • hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 27, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  13. Population of Central America by country 2023

    • statista.com
    • flwrdeptvarieties.store
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of Central America by country 2023 [Dataset]. https://www.statista.com/statistics/1399508/population-of-central-america-by-country/
    Explore at:
    Dataset updated
    Dec 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Americas
    Description

    As of 2023, Guatemala was the most populated country in Central America with over 17.5 million inhabitants. Honduras followed in second with over 10 million. In contrast, Belize was the least populated with less than half a million inhabitants.

  14. Largest cities in Latin America by population 2024

    • flwrdeptvarieties.store
    • statista.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Largest cities in Latin America by population 2024 [Dataset]. https://flwrdeptvarieties.store/?_=%2Ftopics%2F12545%2Fbuenos-aires%2F%23zUpilBfjadnZ6q5i9BcSHcxNYoVKuimb
    Explore at:
    Dataset updated
    Mar 18, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Latin America
    Description

    In 2024, approximately 22.81 million people lived in the São Paulo metropolitan area, making it the biggest in Latin America and the Caribbean and the fifth most populated in the world. The homonymous state of São Paulo was also the most populous federal entity in the country. The second place for the region was Mexico City with 22.51 million inhabitants.

    Brazil's cities

    Brazil is home to two large metropolises, only counting the population within the city limits, São Paulo had approximately 12.4 million inhabitants, and Rio de Janeiro around 6.8 million inhabitants. It also contains a number of smaller, but well known cities such as Brasília, Salvador, Belo Horizonte and many others, which report between 2 and 3 million inhabitants each. As a result, the country's population is primarily urban, with nearly 85 percent of inhabitants living in cities.

    Mexico City

    Mexico City's metropolitan area ranks fifth in the ranking of most populated cities in the world. Founded over the Aztec city of Tenochtitlan in 1521 after the Spanish conquest as the capital of the Viceroyalty of New Spain, the city still stands as one of the most important in Latin America. Nevertheless, the preeminent economic, political, and cultural position of Mexico City has not prevented the metropolis from suffering the problems affecting the rest of the country, namely, inequality and violence. Only in 2021, the city registered a crime incidence of 45,336 reported cases for every 100,000 inhabitants and around 32 percent of the population lived under the poverty line.

  15. Module 3 Lesson 2 – Teacher – Thinking Spatially Using GIS

    • library.ncge.org
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). Module 3 Lesson 2 – Teacher – Thinking Spatially Using GIS [Dataset]. https://library.ncge.org/documents/be958693017f4166b2d993865942933d
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Description

    Thinking Spatially Using GIS

    Thinking Spatially Using GIS is a 1:1 set of instructional materials for students that use ArcGIS Online to teach basic geography concepts found in upper elementary school and above.
    Each module has both a teacher and student file.

    The United States population has grown quickly during the past several hundred years. Keeping track of the nation’s population dates to the country’s origins. The U.S. Constitution adopted in 1787 called for a population count every 10 years, starting in 1790. This process, called the census, would keep track of the population, its activities, and its movements. More importantly, the census would ensure that each state received fair and accurate representation in the U.S. House of Representatives.

    The 1790 Census recorded almost 4 million people. By comparison, the 2000 Census counted almost 300 million. That’s more than 70 times the number of people that lived in the United States 210 years ago! It is estimated that by 2050 there will be 392 million people living in the United States! The United States now is the third most populated country in the world after China and India.

    The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG

    All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries

  16. N

    Country Life Acres, MO Non-Hispanic Population Breakdown by Race

    • neilsberg.com
    csv, json
    Updated Aug 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Country Life Acres, MO Non-Hispanic Population Breakdown by Race [Dataset]. https://www.neilsberg.com/research/datasets/6ab4b259-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Aug 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Missouri, Country Life Acres
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of Country Life Acres by race. It includes the distribution of the Non-Hispanic population of Country Life Acres across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Country Life Acres across relevant racial categories.

    Key observations

    Of the Non-Hispanic population in Country Life Acres, the largest racial group is White alone with a population of 88 (97.78% of the total Non-Hispanic population).

    https://i.neilsberg.com/ch/country-life-acres-mo-population-by-race-and-ethnicity.jpeg" alt="Country Life Acres Non-Hispanic population by race">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the Country Life Acres
    • Population: The population of the racial category (for Non-Hispanic) in the Country Life Acres is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of Country Life Acres total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Life Acres Population by Race & Ethnicity. You can refer the same here

  17. m

    Maine Cities by Population

    • maine-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Maine Cities by Population [Dataset]. https://www.maine-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.maine-demographics.com/terms_and_conditionshttps://www.maine-demographics.com/terms_and_conditions

    Area covered
    Maine, Portland
    Description

    A dataset listing Maine cities by population for 2024.

  18. i

    Multi Country Study Survey 2000-2001 - Germany

    • dev.ihsn.org
    • apps.who.int
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2019). Multi Country Study Survey 2000-2001 - Germany [Dataset]. https://dev.ihsn.org/nada/catalog/study/DEU_2000_MCSS_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    World Health Organization (WHO)
    Time period covered
    2000 - 2001
    Area covered
    Germany
    Description

    Abstract

    In order to develop various methods of comparable data collection on health and health system responsiveness WHO started a scientific survey study in 2000-2001. This study has used a common survey instrument in nationally representative populations with modular structure for assessing health of indviduals in various domains, health system responsiveness, household health care expenditures, and additional modules in other areas such as adult mortality and health state valuations.

    The health module of the survey instrument was based on selected domains of the International Classification of Functioning, Disability and Health (ICF) and was developed after a rigorous scientific review of various existing assessment instruments. The responsiveness module has been the result of ongoing work over the last 2 years that has involved international consultations with experts and key informants and has been informed by the scientific literature and pilot studies.

    Questions on household expenditure and proportionate expenditure on health have been borrowed from existing surveys. The survey instrument has been developed in multiple languages using cognitive interviews and cultural applicability tests, stringent psychometric tests for reliability (i.e. test-retest reliability to demonstrate the stability of application) and most importantly, utilizing novel psychometric techniques for cross-population comparability.

    The study was carried out in 61 countries completing 71 surveys because two different modes were intentionally used for comparison purposes in 10 countries. Surveys were conducted in different modes of in- person household 90 minute interviews in 14 countries; brief face-to-face interviews in 27 countries and computerized telephone interviews in 2 countries; and postal surveys in 28 countries. All samples were selected from nationally representative sampling frames with a known probability so as to make estimates based on general population parameters.

    The survey study tested novel techniques to control the reporting bias between different groups of people in different cultures or demographic groups ( i.e. differential item functioning) so as to produce comparable estimates across cultures and groups. To achieve comparability, the selfreports of individuals of their own health were calibrated against well-known performance tests (i.e. self-report vision was measured against standard Snellen's visual acuity test) or against short descriptions in vignettes that marked known anchor points of difficulty (e.g. people with different levels of mobility such as a paraplegic person or an athlete who runs 4 km each day) so as to adjust the responses for comparability . The same method was also used for self-reports of individuals assessing responsiveness of their health systems where vignettes on different responsiveness domains describing different levels of responsiveness were used to calibrate the individual responses.

    This data are useful in their own right to standardize indicators for different domains of health (such as cognition, mobility, self care, affect, usual activities, pain, social participation, etc.) but also provide a better measurement basis for assessing health of the populations in a comparable manner. The data from the surveys can be fed into composite measures such as "Healthy Life Expectancy" and improve the empirical data input for health information systems in different regions of the world. Data from the surveys were also useful to improve the measurement of the responsiveness of different health systems to the legitimate expectations of the population.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The metropolitan, urban and rural population and all iadministrative regional unitsi as defined in Official Europe Union Statistics (NUTS 2) covered proportionately the respective population aged 18 and above. The country was divided into an appropriate number of areas, grouping NUTS regions at whatever level appropriately. The NUTS covered in Germany were the following; Arnsberg, Berlin-Ost, Berlin-West, Bremen, Chemnitz, Cottbus, Darmstadt, Detmold, Dreden, Leipzig, D Csseldorf, Frankfurt/Oder, Gera, Suhl, Giessen, Hall, Erfurt, Hamburg, Kassel, Koblenz, K?ln, Magdeburg, Mittelfranken, M Cnster, Neubrandenburg, Niederbayern, Nordbaden-Karlsruhe, Nordw Crttemberg-Stuttgart, Oberbayern, Oberfranken, Oberpfalz, Potsdam, RB L Cneburg, RB Braunsweig, RB Weser-EMS, RB Hannover, Rheinhessen-Pfalz, Rostock, Saarland, Schleswig Holstein, Schwaben, Schwerin, S Cdbaden-Freiburg, S Cdw Crttemberg-T Cbingen, Trier, Unterfranken.

    The basic sample design was a multi-stage, random probability sample. 100 sampling points were drawn with probability proportional to population size, for a total coverage of the country. The sampling points were drawn separately in West Germany and East Germany. The sampling points were drawn after stratification by NUTS 2 region and by degree of urbanisation. They represented the whole territory of the country surveyed and are selected proportionally to the distribution of the population in terms of metropolitan, urban and rural areas. In each of the selected sampling points, one address was drawn at random. This starting address forms the first address of a cluster of a maximum of 20 addresses. The remainder of the cluster was selected as every Nth address by standard random route procedure from the initial address. In theory, there is no maximum number of addresses issued per country. Procedures for random household selection and random respondent selection are independent of the intervieweris decision and controlled by the institute responsible. They should be as identical as possible from to country, full functional equivalence being a must. At every address up to 4 recalls are made to attempt to achieve an interview with the selected respondent. There was only one interview per household. The final sample size is 1,123 completed interviews.

    Mode of data collection

    Face-to-face [f2f]

    Cleaning operations

    Data Coding At each site the data was coded by investigators to indicate the respondent status and the selection of the modules for each respondent within the survey design. After the interview was edited by the supervisor and considered adequate it was entered locally.

    Data Entry Program A data entry program was developed in WHO specifically for the survey study and provided to the sites. It was developed using a database program called the I-Shell (short for Interview Shell), a tool designed for easy development of computerized questionnaires and data entry (34). This program allows for easy data cleaning and processing.

    The data entry program checked for inconsistencies and validated the entries in each field by checking for valid response categories and range checks. For example, the program didn’t accept an age greater than 120. For almost all of the variables there existed a range or a list of possible values that the program checked for.

    In addition, the data was entered twice to capture other data entry errors. The data entry program was able to warn the user whenever a value that did not match the first entry was entered at the second data entry. In this case the program asked the user to resolve the conflict by choosing either the 1st or the 2nd data entry value to be able to continue. After the second data entry was completed successfully, the data entry program placed a mark in the database in order to enable the checking of whether this process had been completed for each and every case.

    Data Transfer The data entry program was capable of exporting the data that was entered into one compressed database file which could be easily sent to WHO using email attachments or a file transfer program onto a secure server no matter how many cases were in the file. The sites were allowed the use of as many computers and as many data entry personnel as they wanted. Each computer used for this purpose produced one file and they were merged once they were delivered to WHO with the help of other programs that were built for automating the process. The sites sent the data periodically as they collected it enabling the checking procedures and preliminary analyses in the early stages of the data collection.

    Data quality checks Once the data was received it was analyzed for missing information, invalid responses and representativeness. Inconsistencies were also noted and reported back to sites.

    Data Cleaning and Feedback After receipt of cleaned data from sites, another program was run to check for missing information, incorrect information (e.g. wrong use of center codes), duplicated data, etc. The output of this program was fed back to sites regularly. Mainly, this consisted of cases with duplicate IDs, duplicate cases (where the data for two respondents with different IDs were identical), wrong country codes, missing age, sex, education and some other important variables.

  19. WWII: pre-war populations of selected Allied and Axis countries and...

    • statista.com
    Updated Jan 1, 1998
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (1998). WWII: pre-war populations of selected Allied and Axis countries and territories 1938 [Dataset]. https://www.statista.com/statistics/1333819/pre-wwii-populations/
    Explore at:
    Dataset updated
    Jan 1, 1998
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1938
    Area covered
    World
    Description

    In 1938, the year before the outbreak of the Second world War, the countries with the largest populations were China, the Soviet Union, and the United States, although the United Kingdom had the largest overall population when it's colonies, dominions, and metropole are combined. Alongside France, these were the five Allied "Great Powers" that emerged victorious from the Second World War. The Axis Powers in the war were led by Germany and Japan in their respective theaters, and their smaller populations were decisive factors in their defeat. Manpower as a resource In the context of the Second World War, a country or territory's population played a vital role in its ability to wage war on such a large scale. Not only were armies able to call upon their people to fight in the war and replenish their forces, but war economies were also dependent on their workforce being able to meet the agricultural, manufacturing, and logistical demands of the war. For the Axis powers, invasions and the annexation of territories were often motivated by the fact that it granted access to valuable resources that would further their own war effort - millions of people living in occupied territories were then forced to gather these resources, or forcibly transported to work in manufacturing in other Axis territories. Similarly, colonial powers were able to use resources taken from their territories to supply their armies, however this often had devastating consequences for the regions from which food was redirected, contributing to numerous food shortages and famines across Africa, Asia, and Europe. Men from annexed or colonized territories were also used in the armies of the war's Great Powers, and in the Axis armies especially. This meant that soldiers often fought alongside their former-enemies. Aftermath The Second World War was the costliest in human history, resulting in the deaths of between 70 and 85 million people. Due to the turmoil and destruction of the war, accurate records for death tolls generally do not exist, therefore pre-war populations (in combination with other statistics), are used to estimate death tolls. The Soviet Union is believed to have lost the largest amount of people during the war, suffering approximately 24 million fatalities by 1945, followed by China at around 20 million people. The Soviet death toll is equal to approximately 14 percent of its pre-war population - the countries with the highest relative death tolls in the war are found in Eastern Europe, due to the intensity of the conflict and the systematic genocide committed in the region during the war.

  20. f

    A genome-wide data assessment of the African lion (Panthera leo) population...

    • plos.figshare.com
    • data.niaid.nih.gov
    • +2more
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nathalie Smitz; Olivia Jouvenet; Fredrick Ambwene Ligate; William-George Crosmary; Dennis Ikanda; Philippe Chardonnet; Alessandro Fusari; Kenny Meganck; François Gillet; Mario Melletti; Johan R. Michaux (2023). A genome-wide data assessment of the African lion (Panthera leo) population genetic structure and diversity in Tanzania [Dataset]. http://doi.org/10.1371/journal.pone.0205395
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Nathalie Smitz; Olivia Jouvenet; Fredrick Ambwene Ligate; William-George Crosmary; Dennis Ikanda; Philippe Chardonnet; Alessandro Fusari; Kenny Meganck; François Gillet; Mario Melletti; Johan R. Michaux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tanzania
    Description

    The African lion (Panthera leo), listed as a vulnerable species on the IUCN Red List of Threatened Species (Appendix II of CITES), is mainly impacted by indiscriminate killing and prey base depletion. Additionally, habitat loss by land degradation and conversion has led to the isolation of some subpopulations, potentially decreasing gene flow and increasing inbreeding depression risks. Genetic drift resulting from weakened connectivity between strongholds can affect the genetic health of the species. In the present study, we investigated the evolutionary history of the species at different spatiotemporal scales. Therefore, the mitochondrial cytochrome b gene (N = 128), 11 microsatellites (N = 103) and 9,103 SNPs (N = 66) were investigated in the present study, including a large sampling from Tanzania, which hosts the largest lion population among all African lion range countries. Our results add support that the species is structured into two lineages at the continental scale (West-Central vs East-Southern), underlining the importance of reviewing the taxonomic status of the African lion. Moreover, SNPs led to the identification of three lion clusters in Tanzania, whose geographical distributions are in the northern, southern and western regions. Furthermore, Tanzanian lion populations were shown to display good levels of genetic diversity with limited signs of inbreeding. However, their population sizes seem to have gradually decreased in recent decades. The highlighted Tanzanian African lion population genetic differentiation appears to have resulted from the combined effects of anthropogenic pressure and environmental/climatic factors, as further discussed.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
Organization logo

Countries with the largest population 2025

Explore at:
37 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 21, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
World
Description

In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth

Search
Clear search
Close search
Google apps
Main menu