Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Four datasets are presented here. The original dataset is a collection of the COVID-19 data maintained by Our World in Data. It includes data on confirmed cases, and deaths, as well as other variables of potential interest for ten countries such as Australia, Brazil, Canada, China, Denmark, France, Israel, Italy, the United Kingdom, and the United States. The original dataset includes the data from the date of 31st December in 2019 to 31st May in 2020 with a total of 1.530 instances and 19 features. This dataset is collected from a variety of sources (the European Centre for Disease Prevention and Control, United Nations, World Bank, Global Burden of Disease, Blavatnik School of Government, etc.). After the original dataset is pre-processed by cleaning and removing some data including unnecessary and blank. Then, all strings are converted numeric values, and some new features such as continent, hemisphere, year, month, and day are added by extracting the original features. After that, the processed original dataset is organized for prediction of the number of new cases of COVID-19 for 1 day, 3 days, and 10 days ago and three datasets (Dataset-1, 2, 3) are created for that.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
After three years of around-the-clock tracking of COVID-19 data from around the world, Johns Hopkins has discontinued the Coronavirus Resource Center’s operations.
The site’s two raw data repositories will remain accessible for information collected from 1/22/20 to 3/10/23 on cases, deaths, vaccines, testing and demographics.
Novel Corona Virus (COVID-19) epidemiological data since 22 January 2020. The data is compiled by the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) from various sources including the World Health Organization (WHO), DXY.cn, BNO News, National Health Commission of the People’s Republic of China (NHC), China CDC (CCDC), Hong Kong Department of Health, Macau Government, Taiwan CDC, US CDC, Government of Canada, Australia Government Department of Health, European Centre for Disease Prevention and Control (ECDC), Ministry of Health Singapore (MOH), and others. JHU CCSE maintains the data on the 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository on Github.
Fields available in the data include Province/State, Country/Region, Last Update, Confirmed, Suspected, Recovered, Deaths.
On 23/03/2020, a new data structure was released. The current resources for the latest time series data are:
---DEPRECATION WARNING---
The resources below ceased being updated on 22/03/2020 and were removed on 26/03/2020:
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials t
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2016-2020 American Community Survey (ACS) population estimates are included to calculate the cumulative rate per 10,000 residents.
Dataset covers cases going back to 3/2/2020 when testing began. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily.
Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas
B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date.
The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date).
COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated.
C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 05:00 Pacific Time.
D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset can be used to track the spread of COVID-19 throughout the city, in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date.
Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. Cases are dropped altogether for areas where acs_population < 1000 4. Deaths data are not included in this dataset for privacy reasons. The low COVID-19 death rate in San Francisco, along with other publicly available information on deaths, means that deaths data by geography and day is too granular and potentially risky. Read more in our privacy guidelines
Rate suppression in effect where counts lower than 20 Rates are not calculated unless the cumulative case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website.
Rows included for Citywide case counts Rows are included for the Citywide case counts and incidence rate every day. These Citywide rows can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongoing data quality efforts result in improved mapping on a rolling bases.
Related dataset See the dataset of the most recent cumulative counts for all geographic areas here: https://data.sfgov.org/COVID-19/COVID-19-Cases-and-Deaths-Summarized-by-Geography/tpyr-dvnc
E. CHANGE LOG
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties. This dataset contains the same values used to display information available on the COVID Data Tracker at: https://covid.cdc.gov/covid-data-tracker/#county-view?list_select_state=all_states&list_select_county=all_counties&data-type=CommunityLevels The data are updated weekly.
CDC looks at the combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days — to determine the COVID-19 community level. The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge. Using these data, the COVID-19 community level is classified as low, medium, or high. COVID-19 Community Levels can help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
See https://www.cdc.gov/coronavirus/2019-ncov/science/community-levels.html for more information.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
For more details on the Minnesota Department of Health COVID-19 thresholds, see COVID-19 Public Health Risk Measures: Data Notes (Updated 4/13/22). https://mn.gov/covid19/assets/phri_tcm1148-434773.pdf
Note: This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022. March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released. March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate. March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset. March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases. March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average). March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior. April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.
Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:
This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.
Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).
Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.
Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.
Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas
Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:
1 Large Central Metro
2 Large Fringe Metro
3 Medium Metro
4 Small Metro
5 Micropolitan
6 Non-Core (Rural)
American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:
Age 65 - “Age65”
1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)
Non-Hispanic, Asian - “NHAA”
1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)
Non-Hispanic, American Indian/Alaskan Native - “NHIA”
1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)
Non-Hispanic, Black - “NHBA”
1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)
Hispanic - “HISP”
1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)
Population in Poverty - “Pov”
1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)
Population Uninsured- “Unins”
1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)
Average Household Size - “HH”
1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)
Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:
1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)
Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:
1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Covid cases per month in Austria, March, 2023 The most recent value is 126901 new Covid cases as of March 2023, a decline compared to the previous value of 128709 new Covid cases. Historically, the average for Austria from February 2020 to March 2023 is 158748 new Covid cases. The minimum of 3 new Covid cases was recorded in February 2020, while the maximum of 1161065 new Covid cases was reached in March 2022. | TheGlobalEconomy.com
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents.
On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021.
Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset.
Dataset is cumulative and covers cases going back to 3/2/2020 when testing began.
Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas
B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents.
C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time.
D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000
Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website.
Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongoing data quality efforts result in improved mapping on a rolling basis.
E. CHANGE LOG
As of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This dataset is no longer being updated as of 11/24/2022. It is being retained on the Open Data Portal for its potential historical interest.
The data represented in this graph are dynamic and may change over time.
Since March 20, the Cambridge Public Health Department (CPHD) has provided data regarding COVID-19 case counts based on the date that the Massachusetts Public Health Department (MDPH) reported the case to CPHD (known as report date).
Beginning March 31, 2020, CPHD began providing COVID-19 case counts based on the onset time -- the date of a positive diagnosis -- which is preferable for studying disease patterns over time. Both sets of data provide the same number of total cases. CPHD often receives onset time (positive COVID-19 diagnosis) after the report date. Thus, the graph displaying onset time is recommended as a representation of the case counts per day.
Daily case counts reflect the total number of cases to date, including active and recovered individuals.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Covid cases per million people in Norway, March, 2023 The most recent value is 377 new Covid cases per million people as of March 2023, an increase compared to the previous value of 217 new Covid cases per million people. Historically, the average for Norway from February 2020 to March 2023 is 7172 new Covid cases per million people. The minimum of 3 new Covid cases per million people was recorded in February 2020, while the maximum of 86323 new Covid cases per million people was reached in February 2022. | TheGlobalEconomy.com
JHU Coronavirus COVID-19 Global Cases, by country
PHS is updating the Coronavirus Global Cases dataset weekly, Monday, Wednesday and Friday from Cloud Marketplace.
This data comes from the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post.
Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Included Data Sources are:
%3C!-- --%3E
**Terms of Use: **
This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.
**U.S. county-level characteristics relevant to COVID-19 **
Chin, Kahn, Krieger, Buckee, Balsari and Kiang (forthcoming) show that counties differ significantly in biological, demographic and socioeconomic factors that are associated with COVID-19 vulnerability. A range of publicly available county-specific data identifying these key factors, guided by international experiences and consideration of epidemiological parameters of importance, have been combined by the authors and are available for use:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Covid cases per million people in Senegal, March, 2023 The most recent value is 3 new Covid cases per million people as of March 2023, an increase compared to the previous value of 1 new Covid cases per million people. Historically, the average for Senegal from February 2020 to March 2023 is 135 new Covid cases per million people. The minimum of 0 new Covid cases per million people was recorded in February 2020, while the maximum of 1056 new Covid cases per million people was reached in July 2021. | TheGlobalEconomy.com
Data for each local authority is listed by:
These reports summarise epidemiological data at lower-tier local authority (LTLA) level for England as at 3 December 2020 at 7pm.
This dataset has been retired as of February 17, 2023. This dataset will be kept for historical purposes, but will no longer be updated. Similar data are available on the state’s open data portal: https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state.
A. DATASET DESCRIPTION This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2019 American Community Survey (ACS) 5-year population estimates are included to calculate the cumulative rate per 10,000 residents.
Dataset covers cases going back to March 18th, 2020 when the first person in Marin County tested positive for COVID-19. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily.
COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated.
Geographic areas summarized are: 1. City, Town, or Community Area 2. Census Tracts 3. Census ZIP Code Tabulation Areas (ZCTAs)
B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by Marin County HHS. Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date.
The 2019 ACS estimates for population provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date).
C. UPDATE PROCESS Geographic analysis is scripted by Marin HHS staff and synced to this dataset each day.
D. HOW TO USE THIS DATASET This dataset can be used to track the spread of COVID-19 throughout Marin County in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date.
Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. For example if a zip code did not have 10 cumulative cases until June 1, 2020 that location will not be included in the dataset until June 1. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. 3. Cases are dropped altogether for areas where acs_population < 1000. Some adjacent geographic areas may be combined until the ACS population exceeds 1,000 to still provide information for these regions.
Note: 14-day case rate or 30-day case rate where the counts are lower than 20 may be unstable. We advise caution in interpreting rates at these small numbers.
A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.Trends represent the day-to-day rate of new cases with a focus on the most recent 10 to 14 days. Includes Puerto Rico, Guam, Northern Marianas, and U.S. Virgin Islands. Daily new case counts are volatile for many reasons and sometimes the trends reflect that volatility. Thus, we decided to include longer-term summaries here. County Trends as of 9 Mar 20230 (-0) in Emergent1135 (+51) in Spreading1664 (-63) in Epidemic230 (+10) in Controlled110 (+2) in End StageNotes: Many states now only report once per week, and FL only once every two weeks. On 3/7/2022 we adjusted the formula for active cases to reflect the Omicron Variant which is documented to cause lower rates of serious and severe illness. To produce these trends we analyze daily updates from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.For more information about COVID-19 trends, see our country level trends story map and the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.Feature layer generated from running the Join Features solution that is the basis for daily updates for the U.S. County COVID-19 Tends Story Map.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Four datasets are presented here. The original dataset is a collection of the COVID-19 data maintained by Our World in Data. It includes data on confirmed cases, and deaths, as well as other variables of potential interest for ten countries such as Australia, Brazil, Canada, China, Denmark, France, Israel, Italy, the United Kingdom, and the United States. The original dataset includes the data from the date of 31st December in 2019 to 31st May in 2020 with a total of 1.530 instances and 19 features. This dataset is collected from a variety of sources (the European Centre for Disease Prevention and Control, United Nations, World Bank, Global Burden of Disease, Blavatnik School of Government, etc.). After the original dataset is pre-processed by cleaning and removing some data including unnecessary and blank. Then, all strings are converted numeric values, and some new features such as continent, hemisphere, year, month, and day are added by extracting the original features. After that, the processed original dataset is organized for prediction of the number of new cases of COVID-19 for 1 day, 3 days, and 10 days ago and three datasets (Dataset-1, 2, 3) are created for that.