Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW.
Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product.
Soil data confidence is described using a 4 class system between high and very low as outlined below.:
Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps.
Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only.
Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area.
Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The map title is Rock Types. Map scale. North arrow pointing to the north. Map projection is Hammer-Aitoff. Border of Canada. Great Lakes Border for each theme category within Canada. Neat line around the map. Each theme category is identified by a number that corresponds to the legend. Legend is divided into three categories: Metamorphic rocks, Deformed Sedimentary and Igneous rocks, Flat Lying Sedimentary rocks. Tactile maps are designed with Braille, large text, and raised features for visually impaired and low vision users. The Tactile Maps of Canada collection includes: (a) Maps for Education: tactile maps showing the general geography of Canada, including the Tactile Atlas of Canada (maps of the provinces and territories showing political boundaries, lakes, rivers and major cities), and the Thematic Tactile Atlas of Canada (maps showing climatic regions, relief, forest types, physiographic regions, rock types, soil types, and vegetation). (b) Maps for Mobility: to help visually impaired persons navigate spaces and routes in major cities by providing information about streets, buildings and other features of a travel route in the downtown area of a city. (c) Maps for Transportation and Tourism: to assist visually impaired persons in planning travel to new destinations in Canada, showing how to get to a city, and streets in the downtown area.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1ehttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1e
GISCO (Geographic Information System of the COmmission) is responsible for meeting the European Commission's geographical information needs at three levels: the European Union, its member countries, and its regions.
In addition to creating statistical and other thematic maps, GISCO manages a database of geographical information, and provides related services to the Commission. Its database contains core geographical data covering the whole of Europe, such as administrative boundaries, and thematic geospatial information, such as population grid data. Some data are available for download by the general public and may be used for non-commercial purposes. For further details and information about any forthcoming new or updated datasets, see http://ec.europa.eu/eurostat/web/gisco/geodata.
This metadata refers to the whole content of GISCO reference database extracted in June 2020, which contains both public datasets (also available for the general public through http://ec.europa.eu/eurostat/web/gisco/geodata) and datasets to be used only internally by the EEA (typically, but not only, GISCO datasets at 1:100k). The document GISCO-ConditionsOfUse.pdf provided with the dataset gives information on the copyrighted data sources, the mandatory acknowledgement clauses and re-dissemination rights. The license conditions for EuroGeographic datasets in GISCO are provided in a standalone document "LicenseConditions_EuroGeographics.pdf".
The database is provided in GPKG files, with datasets at scales from 1:60M to 1:100K, with reference years spanning until 2021 (e.g. NUTS 2021). Attribute files are provided in CSV. The database manual, a file with the content of the database, a glossary, and a document with the naming conventions are also provided with the database.
The main updates with respect to the previous version of the full database in the SDI (from Jul. 2018) are the addition of the following datasets: - Administrative boundaries at country level, 2020 (CNTR_2020) - Administrative boundaries at commune level, 2016 (COMM_2016) - Coastline boundaries, 2016 (COAS_2016) - Exclusive Economic Zones, 2016 (EEZ_2016)
Local Administrative Units, 2018 (LAU_2018)
NOTE: This metadata file is only for internal EEA purposes and in no case replaces the official metadata provided by Eurostat. For specific GISCO datasets included in this version there are individual EEA metadata files in the SDI: NUTS_2021 and CNTR_2020. For other GISCO datasets in the SDI, it is recommended to use the version included in this dataset. The original metadata files from Eurostat for the different GISCO datasets are available via ECAS login through the Eurostat metadata portal on https://webgate.ec.europa.eu/inspire-sdi/srv/eng/catalog.search#/home. For the public products metadata can also be downloaded from https://ec.europa.eu/eurostat/web/gisco/geodata. For more information about the full database or any of its datasets, please contact the SDI Team (sdi@eea.europa.eu).
Important Note: This item is in mature support as of May 2025 and will retire in December 2025.This map features land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.This web map uses Terrain with Labels vector layers as its basemap.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.What can you do with this layer?This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.\For more information, see the Landscape Layers group on ArcGIS Online.
The land use and land cover (LULC) mapping generated from the 30 meter resolution Landsat TM5 is prepared for CAP LTER analyses. The series of products includes three levels LULC classifications, from coarser land-cover types to finer, hybrid LULC types, arranged in three thematic maps with contrasting numbers of LULC categories: (1) 12, (2) 15, and (3) 21. The percent of vegetation cover (vegetation fraction) in the residential area is provided. The image has a resampled spatial resolution of 15 meters due to the image classification procedure.
This dataset is the first 1: 100,000 desert spatial database in China based on the graphic data of desert thematic maps. It mainly reflects the geographical distribution, area size, and mobility of sand dunes in China. According to the system design requirements and relevant standards, the input data is standardized and uniformly converted into a standard format for various types of data input. Build a library to run the delivery system. This project uses the TM image in 2000 as the information source, and interprets, extracts, and edits the coverage of the national land use map and TM digital image information in 2000. It uses remote sensing and geographic information system technology to 1: 100,000 Thematic mapping requirements for scale bar maps were made on the desert, sandy land and gravel Gobi in China. The 1: 100,000 desert map across the country can save users a lot of data entry and editing work when they are engaged in research on resources and the environment. Digital maps can be easily converted into layout maps The dataset properties are as follows: Divided into two folders e00 and shp: Desert map name and province comparison table in each folder 01 Ahsm Anhui 02 Bjsm Beijing 03 Fjsm Fujian 04 Gdsm Guangdong 05 Gssm Gansu 06 Gxsm Guangxi Zhuang Autonomous Region 07 Gzsm Guizhou 08 Hebsm Hebei 09 Hensm Henan 10 Hljsm Heilongjiang 11 Hndsm Hainan 12 Hubsm Hubei 13 Jlsm Jilin Province 14 Jssm Jiangsu 15 Jxsm Jiangxi 16 Lnsm Liaoning 17 Nmsm Inner Mongolia Gu Autonomous Region 18 Nxsm Ningxia Hui Autonomous Region 19 Qhsm Qinghai 20 Scsm Sichuan 21 Sdsm Shandong 22 Sxsm Shaanxi Province 23 Tjsm Tianjin 24 Twsm Taiwan Province 25 Xjsm Xinjiang Uygur Autonomous Region 26 Xzsm Tibet Autonomous Region 27 Zjsm Zhejiang 28 Shxsm Shanxi 1. Data projection: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) 2. Data attribute table: area (area) perimeter ashm_ (sequence code) class (desert encoding) ashm_id (desert encoding) 3. Desert coding: mobile sandy land 2341010 Semi-mobile sandy land Semi-fixed sandy land 2341030 Gobi 2342000 Saline land 2343000 4: File format: National, sub-provincial and county-level desert map data types are vector shapefiles and E00 5: File naming: Data organization based on the National Basic Resources and Environmental Remote Sensing Dynamic Information Service System is performed on the file management layer of Windows NT. The file and directory names are compound names of English characters and numbers. Pinyin + SM composition, such as the desert map of Gansu Province is GSSM. The flag and county desert map is the pinyin + xxxx of the province name, and xxxx is the last four digits of the flag and county code. The division of provinces, districts, flags and counties is based on the administrative division data files in the national basic resources and environmental remote sensing dynamic information service operation system.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These datasets represent a systematic collection of harmonized data concerning geological events. GIS layers display data on the Portal at a resolution of 1:100,000 and 1:250,000 scale concerning earthquakes, submarine landslides, volcanoes, tsunamis, fluid emissions and Quaternary tectonics, subdivided according to their geometry (polygons, points and lines). They provide information on the type of events which have taken place in the past and might potentially occur again. Where available, details include dimensions, state of activity, morphological type and lithology. The elaboration of guidelines to compile GIS layers was aimed at identifying parameters to be used to thoroughly characterize each event. Particular attention has been devoted to the definition of the Attribute tables in order to achieve the best degree of harmonization and standardization complying with the European INSPIRE Directive. Shapefiles can be downloaded from the Portal and used locally in order to browse through the details of the different features, consulting their Attribute tables. Information contained therein provide an inventory of available data which can be fruitfully applied in the management of coastal areas and support planning of further surveys. By combining the diverse information contained in the different layers, it might be possible to elaborate additional thematic maps which could support further research. Moreover, they potentially represent a useful tool to increase awareness of the hazards which might affect coastal areas. Data sources include detailed information held by the Project Partners plus any further publicly available third-party data (last update Sep. 2021). All products delivered by Partners have been collated, verified and validated in order to achieve the best degree of harmonization and INSPIRE compliance. Each layer is complemented by an Attribute table which provides, in addition to the location, type of geological event and its references (mandatory), further information for each occurrence (where available). Since features considered within WP6 have a scattered distribution, the additional layer “Geological events distribution” provides basic information on areas of occurrences, no occurrences and no data for the marine areas surrounding European countries.
The cruise ARCADIA (MaGIC Project) is aimed at the acquisition of multibeam ecometric data in the two map sheets of the southern Adriatic sea that are under ISMAR competence: Monopoli (map sheet 52) and Brindisi (map sheet 51). MaGIC Project is funded by the Italian Civil Protection Department for the acquisition of high-resolution morphobatimetric data along Italian continental margins. Is expected the production of “Map of the elements of geohazards of the Itralian Seas”, consisting of 72 map sheets at scale 1:50.000, of which 19 pertaining to ISMAR-CNR UOS Bologna. For each sheet there are four thematic maps. They highlight different aspects of the geohazard and the different scales at which it can be investigated and represented.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent …Show full descriptionThis map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW. Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product. Soil data confidence is described using a 4 class system between high and very low as outlined below.: Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps. Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps. Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps. Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only. Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area. Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta.
Map of summer pyrological risk levels of forest typologies carried out as part of the implementation of the Regional Plan for the planning of forecasting, prevention and active fight against forest fires, art 3 Law n. 353/2000 - Years 2011-2012. Regional thematic map derived from the rating classification of elements of the regional thematic map of Forest Types 2006 (summer classification by Tammaro F.)
Thematic maps with different raw material geological contents in different scales (1:50,000 to 1:500,000). Some maps have been published.
Additional information Map: thematic, relatable: analog
The soil texture dataset of the Heihe River Basin (2011) is compiled by LIU Chao et al. (2011) by using the SOLIM model. Based on the famous Jenny equation of soil science, and according to the environmental factors such as climate, biology, topography and parent material, knowledge mining and fuzzy logic are combined on the basis of existing soil texture maps and soil profiles in Heihe River Basin. It is produced and integrated with thematic maps of glaciers and lakes. According to the different characteristics of the six ecological zones in Heihe River Basin, different mapping methods are used in the upper, middle and lower reaches. According to the different characteristics of six ecological zones in Heihe River Basin, different mapping methods are used in the upper, middle and lower reaches. The data is in grid format with 1KM spatial resolution and WGS-84 projection. Soil texture attributes and categories represent 0-30 cm topsoil texture attributes, derived from depth-weighted averages. The texname in the attribute table indicates the soil texture type name. Sandrange, siltrange, and clayrange respectively represent the sand, powder, and clay content ranges in the USDA soil triangle. Sandaverage, siltaverage and clayaverage are taken from the measured soil profiles, the average content of sand, silt and clay particles as the sand, silt and clay content of the soil type. (Note: The soil particle content of clay loam is derived from the soil quality map of Beijing Normal University). The soil texture classification standard is USDA, the sand grain size is defined as (2~0.05mm), the silt particle size is (0.05~0.002mm) and the clay size is defined as (<0.002mm).
Data licence Germany – Attribution – Version 2.0https://www.govdata.de/dl-de/by-2-0
License information was derived automatically
Announcement: The introduction of GeoInfoDok 7.1 is planned in Hamburg in the 4th quarter of 2023. Do you use our basic geo data? Then check in good time whether you are affected by the schema change. If you have any questions, please contact the functional mailbox: geobasisdaten@gv.hamburg.de The digital basic landscape model (basic DLM) is based on the basic scale 1: 25,000. A positional accuracy of ± 3 m is aimed for for all objects. It has a depth of information that goes beyond the representation of the digital city map of Hamburg (1: 20,000). The content and the modeling of the landscape of the basic DLM are described in the ATKIS® object type catalog (ATKIS®-OK basic DLM). The object types, names, attributes and references were recorded in three consecutive implementation stages, which are shown in the ATKIS®-OK basic DLM. In Hamburg, the implementation stages for the entire state area have been available since 2007. Since October 2009, the basic DLM has been managed in the nationwide AAA model. The feature types are included in ATKIS-OK (see reference). Particularly suitable as a geometric and semantic basis of reference for the structure of geographic information systems and for linking to space-related subject-specific data for subject information systems, for computer-aided intersection and analysis with thematic information, for spatial planning of all kinds and for the derivation of topographical and thematic maps. Areas of application are all task areas for which a spatial reference is required, including energy, forestry and agriculture, administration, demography, housing, land use, regional and route planning, road construction and management, facility management, traffic navigation and fleet management, transport, Mining, hydrology and water management, ecology, environmental protection, military, geology and geodesy, but also culture, recreation and leisure, and communication.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Prince of Wales Existing Vegetation mapping project encompasses over 4.2 million acres of Southeastern Alaska—2.3 million of which are terrestrial. This map was designed to be consistent with the standards established in the Existing Vegetation Classification and Technical Guide (Nelson et al. 2015), and to provide baseline information to support project planning and inform land management of the Prince of Wales and surrounding islands. The final map comprises seven distinct, integrated feature layers: 1) vegetation type; 2) tree canopy cover; 3) trees per acre (TPA) for trees ≥ 1’ tall; 4) trees per acre for trees ≥ 6” diameter at breast height (dbh); 5) quadratic mean diameter (QMD) for trees ≥ 2” dbh; 6) quadratic mean diameter for trees ≥ 9” dbh; and 7) thematic tree size. The dominance type map consists of 18 classes, including 15 vegetation classes and 3 other land cover types. Continuous tree canopy cover, TPA, QMD, and thematic tree size was developed for areas classified as forest on the final vegetation type map layer. Geospatial data, including remotely sensed imagery, topographic data, and climate information, were assembled to classify vegetation and produce the maps. A semi-automated image segmentation process was used to develop the modeling units (mapping polygons), which delineate homogeneous areas of land cover. Field plots containing thematic vegetation type and tree size information were used as reference for random forest prediction models. Important model drivers included 30 cm orthoimagery collected during the height of the 2019 growing season, in addition to Sentinel 2 and Landsat 8 satellite imagery, for vegetation type prediction. Additionally, detailed tree inventory data were collected at precise field locations to develop forest metrics for Quality Level 1 (QL1) Light Detection and Ranging (LiDAR) data. LiDAR information was acquired across approximately 80% of the project’s land area. Continuous tree canopy cover and 2nd order forest metrics (TPA and QMD) were modeled across the LiDAR coverage area, and subsequently, extrapolated to the full project extent using Interferometric Synthetic Aperture Radar (IfSAR) as the primary topographic data source.
These SUVI Level 2 (L2) data are designed for use by the NOAA-NWS Space Weather Forecast Office and include several different products: composite images, thematic maps, bright regions, flare locations, coronal hole boundaries, coronal hole images, and fixed and running difference images. The SUVI Composite Image product is a weight average using the short and long exposures found in the SUVI Level-1b product to produce a high-dynamic range image. SUVI Fixed Difference images use a set "reference" image to produce difference images with respect to a particular event. SUVI Running Difference images use the most recent data to produce difference images showing short-term changes in the solar corona. The SUVI Thematic Map is a "mask" image that shows the automatically classified solar features. Composite images, as well as fixed and running difference images, are available in each of SUVI's six wavelengths. SUVI image products are available as FITS files. The SUVI Coronal Hole Boundary product contains lists of the boundary pixels in both image and heliographic coordinates for all coronal holes identified in the SUVI Thematic Map. The SUVI Bright Region Report uses the SUVI Thematic Map and SUVI Composite Image products to provide statistics on identified bright regions on the Sun. The SUVI Flare Location Report provides locations and statistics on flares identified by either the SUVI Thematic Map or the XRS Event Detection products. These products, Coronal Hole Boundaries, Bright Region Report, and Flare Location Report, are tabular data provided in netCDF-4 format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The article proposes the adaptation and application of the German methodology for the construction of climatic maps for the city of Belo Horizonte. Land use data, geographic aspects and wind information were analyzed, producing different layers of thematic maps. Their combination allowed a definition of eight classes of climatopes, making an analytical urban climatic map. It was verified that the edges of the city at south, southeast and northeast, which the green areas are concentrated, have greater dynamic potential and lower thermal load, considered an advantage for nocturnal cooling. However, the densely built-up areas located in the city center have low nocturnal cooling capacity, due to thermal load storage and the lowest dynamic potential that favor the heating of the surfaces. Concerning to the distribution of climatope classes, it was observed that about half of the city area presents a negative thermal load and a good dynamic potential as an atmospheric response. This result indicates that the negative impact of the urban elements on the surface thermal load can be considered still low. The results are also the basis for urban planning recommendations in order to preserve and expand urban areas that can contribute to the improvement of the local climate of Belo Horizonte.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT One of the main factors that determine the success of decision-making in the fields is the climatic factor. This way, the geostatistical techniques have been used to represent and understand the spatial or temporal dynamics of meteorological parameters. Therefore, the aim of this research was to represent temporally through thematic maps, the average daily behavior for meteorological variables and the hydric balance for the municipality of Patos de Minas - MG. The climatic data were acquired from the automatic station INMET from the years 1990 to 2015. Later, it was calculated the evapotranspiration and the hydric balance for different capacities of available water in the soil (CAW): 24 mm, 48 mm, 80 mm and 112 mm. The climate variables showed temporal dependence, and through the thematic maps, derived from the ordinary Kriging, it was possible to identify the seasons of the year that are favorable for the production for the different crop groups.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Prince of Wales Existing Vegetation mapping project encompasses over 4.2 million acres of Southeastern Alaska—2.3 million of which are terrestrial. This map was designed to be consistent with the standards established in the Existing Vegetation Classification and Technical Guide (Nelson et al. 2015), and to provide baseline information to support project planning and inform land management of the Prince of Wales and surrounding islands. The final map comprises seven distinct, integrated feature layers: 1) vegetation type; 2) tree canopy cover; 3) trees per acre (TPA) for trees ≥ 1’ tall; 4) trees per acre for trees ≥ 6” diameter at breast height (dbh); 5) quadratic mean diameter (QMD) for trees ≥ 2” dbh; 6) quadratic mean diameter for trees ≥ 9” dbh; and 7) thematic tree size. The dominance type map consists of 18 classes, including 15 vegetation classes and 3 other land cover types. Continuous tree canopy cover, TPA, QMD, and thematic tree size was developed for areas classified as forest on the final vegetation type map layer. Geospatial data, including remotely sensed imagery, topographic data, and climate information, were assembled to classify vegetation and produce the maps. A semi-automated image segmentation process was used to develop the modeling units (mapping polygons), which delineate homogeneous areas of land cover. Field plots containing thematic vegetation type and tree size information were used as reference for random forest prediction models. Important model drivers included 30 cm orthoimagery collected during the height of the 2019 growing season, in addition to Sentinel 2 and Landsat 8 satellite imagery, for vegetation type prediction. Additionally, detailed tree inventory data were collected at precise field locations to develop forest metrics for Quality Level 1 (QL1) Light Detection and Ranging (LiDAR) data. LiDAR information was acquired across approximately 80% of the project’s land area. Continuous tree canopy cover and 2nd order forest metrics (TPA and QMD) were modeled across the LiDAR coverage area, and subsequently, extrapolated to the full project extent using Interferometric Synthetic Aperture Radar (IfSAR) as the primary topographic data source.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Overview Map of Prince of Wales Island. Used for Prince of Wales Island USFS Vegetation Story Map.The Prince of Wales Existing Vegetation mapping project encompasses over 4.2 million acres of Southeastern Alaska—2.3 million of which are terrestrial. This map was designed to be consistent with the standards established in the Existing Vegetation Classification and Technical Guide (Nelson et al. 2015), and to provide baseline information to support project planning and inform land management of the Prince of Wales and surrounding islands. The final map comprises seven distinct, integrated feature layers: 1) vegetation type; 2) tree canopy cover; 3) trees per acre (TPA) for trees ≥ 1’ tall; 4) trees per acre for trees ≥ 6” diameter at breast height (dbh); 5) quadratic mean diameter (QMD) for trees ≥ 2” dbh; 6) quadratic mean diameter for trees ≥ 9” dbh; and 7) thematic tree size. The dominance type map consists of 18 classes, including 15 vegetation classes and 3 other land cover types. Continuous tree canopy cover, TPA, QMD, and thematic tree size was developed for areas classified as forest on the final vegetation type map layer. Geospatial data, including remotely sensed imagery, topographic data, and climate information, were assembled to classify vegetation and produce the maps. A semi-automated image segmentation process was used to develop the modeling units (mapping polygons), which delineate homogeneous areas of land cover. Field plots containing thematic vegetation type and tree size information were used as reference for random forest prediction models. Important model drivers included 30 cm orthoimagery collected during the height of the 2019 growing season, in addition to Sentinel 2 and Landsat 8 satellite imagery, for vegetation type prediction. Additionally, detailed tree inventory data were collected at precise field locations to develop forest metrics for Quality Level 1 (QL1) Light Detection and Ranging (LiDAR) data. LiDAR information was acquired across approximately 80% of the project’s land area. Continuous tree canopy cover and 2nd order forest metrics (TPA and QMD) were modeled across the LiDAR coverage area, and subsequently, extrapolated to the full project extent using Interferometric Synthetic Aperture Radar (IfSAR) as the primary topographic data source.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map provides a guide to the data confidence of DPIE's soil related thematic map products in NSW. Examples of products this map supports includes Land and Soil Capability mapping, Inherent fertility of soils in NSW and Great Soil Group soil types in NSW.
Confidence classes are determined based on the data scale, type of mapping and information collected, accuracy of the attributes and quality assurance on the product.
Soil data confidence is described using a 4 class system between high and very low as outlined below.:
Good (1) - All necessary soil and landscape data is available at a catchment scale (1:100,000 & 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Moderate (2) - Most soil and landscape data is available at a catchment scale (1:100,000 - 1:250,000) to undertake the assessment of LSC and other soil thematic maps.
Low (3) - Limited soil and landscape data is available at a reconnaissance catchment scale (1:100,000 & 1:250,000) which limits the quality of the assessment of LSC and other soil thematic maps.
Very low (4) - Very limited soil and landscape data is available at a broad catchment scale (1:250,000 - 1:500,000) and the LSC and other soil thematic maps should be used as a guide only.
Online Maps: This dataset can be viewed using eSPADE (NSW’s soil spatial viewer), which contains a suite of soil and landscape information including soil profile data. Many of these datasets have hot-linked soil reports. An alternative viewer is the SEED Map; an ideal way to see what other natural resources datasets (e.g. vegetation) are available for this map area.
Reference: Department of Planning, Industry and Environment, 2020, Soil Data Confidence map for NSW, Version 4, NSW Department of Planning, Industry and Environment, Parramatta.