100+ datasets found
  1. a

    India: Terrain 3D

    • hub.arcgis.com
    • up-state-observatory-esriindia1.hub.arcgis.com
    • +1more
    Updated Mar 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Terrain 3D [Dataset]. https://hub.arcgis.com/maps/80ffd6e3dd4a4be2bf49766a920a9c23
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    GIS Online
    Description

    The Terrain 3D layer provides global elevation for your work in 3D.What can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage of various datasets comprising this service, click here.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

  2. Adding and working with 3D layers in ArcGIS Online

    • teachwithgis.co.uk
    • lecturewithgis.co.uk
    Updated Feb 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2020). Adding and working with 3D layers in ArcGIS Online [Dataset]. https://teachwithgis.co.uk/datasets/adding-and-working-with-3d-layers-in-arcgis-online
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Click here to open the ArcGIS Online 3D Map Viewer and work through the examples shown belowTo add 3D data to ArcGIS Online you will need a login for an ArcGIS Online account. We would recommend that you use a free schools subscription (full functionality) or the free public account (reduced functionality).Login to ArcGIS OnlineSearch for layers in ArcGIS Online:

  3. d

    Buildings 3D Scene - 2022

    • catalog.data.gov
    • opendata.dc.gov
    • +3more
    Updated Feb 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D.C. Office of the Chief Technology Officer (2025). Buildings 3D Scene - 2022 [Dataset]. https://catalog.data.gov/dataset/buildings-3d-scene-2022
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset provided by
    D.C. Office of the Chief Technology Officer
    Description

    3D buildings. This dataset is a 3D building multipatch created using lidar point cloud bare earth points and building points to create a normalized data surface. Some areas have limited data. The lidar dataset redaction was conducted under the guidance of the United States Secret Service. All data returns were removed from the dataset within the United States Secret Service redaction boundary except for classified ground points and classified water points.The scene layer complies with the Indexed 3D Scene layer (I3S) format. The I3S format is an open 3D content delivery format used to disseminate 3D GIS data to mobile, web, and desktop clients.

  4. Terrain 3D

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • cacgeoportal.com
    • +4more
    Updated Dec 9, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). Terrain 3D [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/7029fb60158543ad845c7e1527af11e4
    Explore at:
    Dataset updated
    Dec 9, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Terrain 3D layer provides global elevation surface to use as a ground in ArcGIS 3D applications.What can you do with this layer? Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro.Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset CoverageTo see the coverage and sources of various datasets comprising this elevation layer, view the World Elevation Coverage Map. Additionally, this layer contains data from Vantor’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

  5. V

    Buildings 3D

    • data.virginia.gov
    • data-uvalibrary.opendata.arcgis.com
    • +3more
    Updated Oct 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Alexandria - GIS Portal (2025). Buildings 3D [Dataset]. https://data.virginia.gov/dataset/buildings-3d
    Explore at:
    kml, geojson, arcgis geoservices rest api, zip, csv, htmlAvailable download formats
    Dataset updated
    Oct 20, 2025
    Dataset provided by
    City of Alexandria GIS
    Authors
    City of Alexandria - GIS Portal
    Description

    A polygon feature representing detailed building footprints providing a detailed footprint for each building in the City over 100 square feet in size. Footprints are segmented along breaks in rooftop elevations if multiple elevations exist. This data contains building base elevation, roof top elevation, and the height (the difference from roof top to base).

  6. Create a 3D Model in Scene Viewer

    • teach-with-gis-uk-esriukeducation.hub.arcgis.com
    Updated Feb 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2025). Create a 3D Model in Scene Viewer [Dataset]. https://teach-with-gis-uk-esriukeducation.hub.arcgis.com/datasets/create-a-3d-model-in-scene-viewer
    Explore at:
    Dataset updated
    Feb 17, 2025
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    The aim of this exercise is to bring data from the previous exercises into ArcGIS Online's Scene Viewer to create a 3D model where we can visualise the data in 3D and understand how a flood depth of 1m in the flood alert areas might impact on buildings in these areas.

  7. Virtual 3D field trips in ArcGIS Online

    • lecturewithgis.co.uk
    Updated Feb 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2020). Virtual 3D field trips in ArcGIS Online [Dataset]. https://lecturewithgis.co.uk/datasets/virtual-3d-field-trips-in-arcgis-online
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    Click here to open the ArcGIS Online 3D Map Viewer and work through the examples shown belowTo add 3D data to ArcGIS Online you will need a login for an ArcGIS Online account. We would recommend that you use a free schools subscription (full functionality) or the free public account (reduced functionality).Login to ArcGIS OnlineChoose a location that you would like to visit and a create a 3D tour

  8. OpenStreetMap 3D Trees (Realistic)

    • cacgeoportal.com
    • anrgeodata.vermont.gov
    • +1more
    Updated Jun 11, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). OpenStreetMap 3D Trees (Realistic) [Dataset]. https://www.cacgeoportal.com/maps/33383da8a75f4d24b4b6a0d0532abe6e
    Explore at:
    Dataset updated
    Jun 11, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Mature Support Notice: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) trees data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results. OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.

  9. OpenStreetMap 3D Buildings

    • cacgeoportal.com
    • uneca.africageoportal.com
    • +5more
    Updated Jun 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). OpenStreetMap 3D Buildings [Dataset]. https://www.cacgeoportal.com/maps/ca0470dbbddb4db28bad74ed39949e25
    Explore at:
    Dataset updated
    Jun 4, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Mature Support Notice: This item is in mature support as of December 2024. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) buildings data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.

  10. d

    Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Contour Dataset of the Potentiometric Surface of Groundwater-Level Altitudes Near the Planned Highway 270 Bypass, East of Hot Springs, Arkansas, July-August 2017 [Dataset]. https://catalog.data.gov/dataset/contour-dataset-of-the-potentiometric-surface-of-groundwater-level-altitudes-near-the-plan
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Hot Springs, Arkansas
    Description

    This dataset contains 50-ft contours for the Hot Springs shallowest unit of the Ouachita Mountains aquifer system potentiometric-surface map. The potentiometric-surface shows altitude at which the water level would have risen in tightly-cased wells and represents synoptic conditions during the summer of 2017. Contours were constructed from 59 water-level measurements measured in selected wells (locations in the well point dataset). Major streams and creeks were selected in the study area from the USGS National Hydrography Dataset (U.S. Geological Survey, 2017), and the spring point dataset with 18 spring altitudes calculated from 10-meter digital elevation model (DEM) data (U.S. Geological Survey, 2015; U.S. Geological Survey, 2016). After collecting, processing, and plotting the data, a potentiometric surface was generated using the interpolation method Topo to Raster in ArcMap 10.5 (Esri, 2017a). This tool is specifically designed for the creation of digital elevation models and imposes constraints that ensure a connected drainage structure and a correct representation of the surface from the provided contour data (Esri, 2017a). Once the raster surface was created, 50-ft contour interval were generated using Contour (Spatial Analyst), a spatial analyst tool (available through ArcGIS 3D Analyst toolbox) that creates a line-feature class of contours (isolines) from the raster surface (Esri, 2017b). The Topo to Raster and contouring done by ArcMap 10.5 is a rapid way to interpolate data, but computer programs do not account for hydrologic connections between groundwater and surface water. For this reason, some contours were manually adjusted based on topographical influence, a comparison with the potentiometric surface of Kresse and Hays (2009), and data-point water-level altitudes to more accurately represent the potentiometric surface. Select References: Esri, 2017a, How Topo to Raster works—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/how-topo-to-raster-works.htm. Esri, 2017b, Contour—Help | ArcGIS Desktop, accessed December 5, 2017, at ArcGIS Pro Raster Surface toolset at http://pro.arcgis.com/en/pro-app/tool-reference/3d-analyst/contour.htm. Kresse, T.M., and Hays, P.D., 2009, Geochemistry, Comparative Analysis, and Physical and Chemical Characteristics of the Thermal Waters East of Hot Springs National Park, Arkansas, 2006-09: U.S. Geological Survey 2009–5263, 48 p., accessed November 28, 2017, at https://pubs.usgs.gov/sir/2009/5263/. U.S. Geological Survey, 2015, USGS NED 1 arc-second n35w094 1 x 1 degree ArcGrid 2015, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html. U.S. Geological Survey, 2016, USGS NED 1 arc-second n35w093 1 x 1 degree ArcGrid 2016, accessed December 5, 2017, at The National Map: Elevation at https://nationalmap.gov/elevation.html.

  11. b

    3D Buildings

    • open-data.bouldercolorado.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BoulderCO (2024). 3D Buildings [Dataset]. https://open-data.bouldercolorado.gov/datasets/58334404efa84869815ac7dab66f9b22
    Explore at:
    Dataset updated
    Sep 13, 2024
    Dataset authored and provided by
    BoulderCO
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    Downloadable multipatch shapefile of 3D buildings created using the city of Boulder's 2013 LiDAR data.

  12. TopoBathy 3D

    • cacgeoportal.com
    • hub-oceanos-osal.hub.arcgis.com
    • +3more
    Updated May 13, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). TopoBathy 3D [Dataset]. https://www.cacgeoportal.com/maps/0c69ba5a5d254118841d43f03aa3e97d
    Explore at:
    Dataset updated
    May 13, 2016
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The TopoBathy 3D layer provides a global seamless topography (land elevation) and bathymetry (water depths) surface to use as a ground in ArcGIS 3D applications.What can you do with this layer?This layer is meant to be used as a ground in ArcGIS Online Web Scenes, ArcGIS Earth, and ArcGIS Pro to help visualize your maps and data in 3D.How do I use this layer?In the ArcGIS Online Web Scene Viewer:Sign-in with ArcGIS Online accountOn the Designer toolbar, click Add LayersClick Browse layersand choose Living Atlas.Search for TopoBathy 3DAdd TopoBathy 3D (Elevation Layer)The TopoBathy 3D will get added under Ground.Change basemap to OceansOptionally, add any other operational layers to visualize in 3D In ArcGIS Pro:Ensure you are logged in with an ArcGIS Online accountOpen a Global SceneOn the Map tab, click Add Data > Elevation Source LayerUnder Portal, click Living Atlas and search for TopoBathy 3DSelect TopoBathy 3D (Elevation Layer) and click OKThe TopoBathy 3D will get added under GroundOptionally, remove other elevation layers from ground and choose the desired basemap Dataset CoverageTo see the coverage and sources of various datasets comprising this elevation layer, view the World Elevation Coverage Map. Additionally, this layer contains data from Vantor’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

  13. Using the 3D measure tool in ArcGIS Online

    • lecturewithgis.co.uk
    Updated Feb 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2020). Using the 3D measure tool in ArcGIS Online [Dataset]. https://lecturewithgis.co.uk/datasets/using-the-3d-measure-tool-in-arcgis-online
    Explore at:
    Dataset updated
    Feb 19, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    1) Measure how far it is from London to Sydney in Australia2) Navigate to Mount Vesuvius and use the dynamic contouring tool

  14. a

    3D East Point Basemap

    • data-eastpointgis.opendata.arcgis.com
    • 20200127-eastpointgis.hub.arcgis.com
    Updated Dec 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of East Point (2018). 3D East Point Basemap [Dataset]. https://data-eastpointgis.opendata.arcgis.com/datasets/3d-east-point-basemap-2
    Explore at:
    Dataset updated
    Dec 21, 2018
    Dataset authored and provided by
    City of East Point
    Description

    v1 for geo-point

  15. LandsD 3D-BIT00 Models

    • opendata.esrichina.hk
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Aug 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2022). LandsD 3D-BIT00 Models [Dataset]. https://opendata.esrichina.hk/maps/94b4704af89e4e908e18e0a8fc1c9a04
    Explore at:
    Dataset updated
    Aug 2, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Description

    This web scene shows the Level 1, Level 3 3D building and infrastructure models on top of the local DTM of Hong Kong. The Level 1 3D Building models were derived from the building polygon of iB1000 and the Level 3 3D models were converted from Level 3 building models of 3D-BIT00 3D Spatial Data. The infrastructure models were converted from infrastructure models of 3D-BIT00 3D Spatial Data. They are subset of Digital Topographic Map and 3D Spatial Data made available by Lands Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://www.hkmapservice.gov.hk/ (“HKMS 2.0”). The source data is in Esri File Geodatabase and 3DS format and uploaded to Esri’s ArcGIS Online platform for sharing and referencing purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.

  16. p

    Tree Point Classification - New Zealand

    • pacificgeoportal.com
    • digital-earth-pacificcore.hub.arcgis.com
    Updated Jul 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2022). Tree Point Classification - New Zealand [Dataset]. https://www.pacificgeoportal.com/content/0e2e3d0d0ef843e690169cac2f5620f9
    Explore at:
    Dataset updated
    Jul 26, 2022
    Dataset authored and provided by
    Eagle Technology Group Ltd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This New Zealand Point Cloud Classification Deep Learning Package will classify point clouds into tree and background classes. This model is optimized to work with New Zealand aerial LiDAR data.The classification of point cloud datasets to identify Trees is useful in applications such as high-quality 3D basemap creation, urban planning, forestry workflows, and planning climate change response.Trees could have a complex irregular geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.This model is designed to extract Tree in both urban and rural area in New Zealand.The Training/Testing/Validation dataset are taken within New Zealand resulting of a high reliability to recognize the pattern of NZ common building architecture.Licensing requirementsArcGIS Desktop - ArcGIS 3D Analyst extension for ArcGIS ProUsing the modelThe model can be used in ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.InputThe model is trained with classified LiDAR that follows the LINZ base specification. The input data should be similar to this specification.Note: The model is dependent on additional attributes such as Intensity, Number of Returns, etc, similar to the LINZ base specification. This model is trained to work on classified and unclassified point clouds that are in a projected coordinate system, in which the units of X, Y and Z are based on the metric system of measurement. If the dataset is in degrees or feet, it needs to be re-projected accordingly. The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 5 Trees / High-vegetationApplicable geographiesThe model is expected to work well in the New Zealand. It's seen to produce favorable results as shown in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Training dataset - Wellington CityTesting dataset - Tawa CityValidation/Evaluation dataset - Christchurch City Dataset City Training Wellington Testing Tawa Validating ChristchurchModel architectureThis model uses the PointCNN model architecture implemented in ArcGIS API for Python.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Never Classified 0.991200 0.975404 0.983239 High Vegetation 0.933569 0.975559 0.954102Training dataThis model is trained on classified dataset originally provided by Open TopoGraphy with < 1% of manual labelling and correction.Train-Test split percentage {Train: 80%, Test: 20%} Chosen this ratio based on the analysis from previous epoch statistics which appears to have a descent improvementThe training data used has the following characteristics: X, Y, and Z linear unitMeter Z range-121.69 m to 26.84 m Number of Returns1 to 5 Intensity16 to 65520 Point spacing0.2 ± 0.1 Scan angle-15 to +15 Maximum points per block8192 Block Size20 Meters Class structure[0, 5]Sample resultsModel to classify a dataset with 5pts/m density Christchurch city dataset. The model's performance are directly proportional to the dataset point density and noise exlcuded point clouds.To learn how to use this model, see this story

  17. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  18. Convert your 3D scenes to virtual reality

    • teachwithgis.co.uk
    Updated Sep 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2022). Convert your 3D scenes to virtual reality [Dataset]. https://teachwithgis.co.uk/datasets/convert-your-3d-scenes-to-virtual-reality
    Explore at:
    Dataset updated
    Sep 9, 2022
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    The ArcGIS 360 VR web app allows you to view 360 VR Experiences in virtual reality headsets. You can also open these experiences on your desktop PCs and mobile devices. In this lesosn we will look at how to convert a web scene to an immersive virtual reality.Visit the ArcGIS 360 VR to explore different examples now.For the product documentation click the button below:

  19. Create a 3D Model of Fife in Scene Viewer

    • lecturewithgis.co.uk
    • teachwithgis.co.uk
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri UK Education (2025). Create a 3D Model of Fife in Scene Viewer [Dataset]. https://lecturewithgis.co.uk/datasets/create-a-3d-model-of-fife-in-scene-viewer
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri UK Education
    Description

    The aim of this exercise is to bring data from the previous exercises into ArcGIS Online's Scene Viewer to create a 3D model where we can visualise the data in 3D and understand how a flood depth of 1m in the flood alert areas might impact on buildings in these areas.

  20. d

    Data from: West Flank Coso FORGE: ArcGIS Data for Geologic Model

    • catalog.data.gov
    • gdr.openei.org
    • +3more
    Updated Jan 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sandia National Laboratories (2025). West Flank Coso FORGE: ArcGIS Data for Geologic Model [Dataset]. https://catalog.data.gov/dataset/west-flank-coso-forge-arcgis-data-for-geologic-model-3b3c6
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    Sandia National Laboratories
    Description

    Archive of ArcGIS data from the West Flank FORGE site located in Coso, California. Archive contains the following eight shapefiles: Polygon of the 3D geologic model (WestFlank3DGeologicModelExtent) Polylines of the traces 3D modeled faults (WestFlank3DModeledFaultTraces) Polylines of the fault traces from Duffield and Bacon, 1980 (WestFlankFaultsfromDuffieldandBacon) Polygon of the West Flank FORGE site (WestFlankFORGEsite) Polylines of the traces of the geologic cross-sections (cross-sections in a separate archive in the GDR) (WestFlankGeologicCrossSections) Polylines of the traces of the seismic reflection profiles through and adjacent to the West Flank site (seismic reflection profiles in a separate archive in the GDR) (WestFlankSiesmicReflectionProfiles) Points of the well collars in and around the West Flank site (WestFlankWellCollars) Polylines of the surface expression of the West Flank well paths (WestFlankWellPaths)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GIS Online (2022). India: Terrain 3D [Dataset]. https://hub.arcgis.com/maps/80ffd6e3dd4a4be2bf49766a920a9c23

India: Terrain 3D

Explore at:
Dataset updated
Mar 21, 2022
Dataset authored and provided by
GIS Online
Description

The Terrain 3D layer provides global elevation for your work in 3D.What can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage of various datasets comprising this service, click here.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.

Search
Clear search
Close search
Google apps
Main menu