Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) buildings data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.
Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) trees data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033, reaching an estimated market value of approximately $45 billion by 2033. Key drivers include the rising adoption of cloud-based GIS solutions, enhanced data analytics capabilities, the proliferation of location-based services, and the growing need for precise spatial data analysis in various industries like urban planning, geological exploration, and water resource management. The market is segmented by application (Geological Exploration, Water Conservancy Projects, Urban Planning, Others) and type (Cloud-based, Web-based). Cloud-based solutions are gaining significant traction due to their scalability, accessibility, and cost-effectiveness. The increasing availability of high-resolution satellite imagery and advancements in artificial intelligence (AI) and machine learning (ML) are further fueling market expansion. While data security concerns and the high initial investment costs for some advanced solutions present restraints, the overall market outlook remains positive, with significant opportunities for both established players and emerging technology providers. Geographical expansion is another key aspect of market growth. North America and Europe currently hold a significant market share, owing to established GIS infrastructure and early adoption of advanced technologies. However, the Asia-Pacific region is expected to witness rapid growth in the coming years, driven by rising government investments in infrastructure development and increasing urbanization in countries like China and India. Competitive dynamics are shaping the market, with major players like Esri, Autodesk, Hexagon, and Mapbox competing on the basis of software features, data integration capabilities, and customer support. The emergence of open-source GIS solutions like QGIS and GRASS GIS is also challenging the dominance of proprietary software, offering cost-effective alternatives for various applications. The continued development and integration of advanced technologies like 3D mapping, real-time data visualization, and location intelligence will further enhance the capabilities of GIS mapping tools, driving market expansion and innovation across various sectors.
This 3D basemap presents OpenStreetMap (OSM) and other data sources and is hosted by Esri using the Streets (Dark) style.The Buildings layer references the Esri 3D Buildings scene layer, which includes commercial 3D buildings data acquired from TomTom and Maxar, in addition to Esri Community Maps and Overture Maps Foundation data. The Esri 3D Buildings scene layer is an alternative to the OpenStreetMap (OSM) 3D Buildings scene layer, particularly for areas where the OSM data is missing accurate 3D attributes.Esri created the Places and Labels, and Streets Dark layers from the Daylight map distribution of OSM data, which was supported by Meta and supplemented with additional data from Microsoft. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project and is excited to make this new scene available to the OSM, GIS, and Developer communities.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market, estimated at $2.5 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $8 billion by 2033. This expansion is fueled by several key factors. The rising adoption of cloud-based solutions and the proliferation of readily available geospatial data are lowering the barrier to entry for both individual and corporate users. Furthermore, advancements in mapping technologies, such as 3D mapping capabilities and improved user interfaces, are enhancing the overall user experience and driving wider adoption. The increasing need for effective data visualization in fields like real estate, urban planning, environmental monitoring, and marketing is further bolstering market growth. Segmentation reveals a significant portion of the market is attributed to paid use licenses, reflecting the advanced features and support provided by premium tools. However, the free-use segment is also growing rapidly, driven by the availability of user-friendly open-source tools and freemium models offered by major players. Corporate users constitute a larger portion of the market compared to individual users, primarily due to their higher budget allocations for data visualization and analysis tools. Geographic distribution reveals a concentration of market share in North America and Europe, largely due to higher technological adoption and a well-established digital infrastructure. However, rapid growth is anticipated in Asia Pacific regions like China and India, driven by increasing urbanization and government initiatives promoting digital transformation. Market restraints include the high cost of advanced mapping software, the need for specialized technical skills for complex projects, and the potential for data security and privacy concerns. Nevertheless, ongoing technological innovation, coupled with the increasing accessibility of data and analytical tools, is anticipated to mitigate these challenges and continue to drive significant market expansion throughout the forecast period. Key players like Mapbox, ArcGIS StoryMaps, and Google are actively shaping the market landscape through continuous product development and strategic partnerships, fostering innovation and competitive pricing strategies.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Monitoring and Mapping Software market is experiencing robust growth, driven by the increasing adoption of drones, advanced sensors, and the rising need for precise geospatial data across diverse sectors. The market's expansion is fueled by applications in construction, agriculture, mining, and urban planning, where real-time data and accurate 3D models are crucial for efficient operations and informed decision-making. The integration of AI and machine learning capabilities within these software solutions is further enhancing their analytical power, enabling automated feature extraction, object recognition, and predictive modeling. This leads to improved efficiency, reduced operational costs, and enhanced safety measures. Key players like Hexagon, Trimble, and Autodesk are driving innovation through continuous product development and strategic acquisitions, while the emergence of open-source solutions like Regard3D and Alicevision fosters community development and wider accessibility. The market is segmented by software type (image/video-based, 3D scanning-based) and deployment (cloud, on-premise), with cloud-based solutions gaining significant traction due to their scalability and accessibility. Looking ahead, the market is expected to witness continued expansion, propelled by ongoing technological advancements, including the development of higher-resolution sensors, improved processing power, and the integration of Internet of Things (IoT) devices. The growing demand for precise mapping and monitoring in infrastructure projects, environmental monitoring, and disaster management will also contribute significantly to market growth. However, factors such as the high initial investment costs associated with sophisticated software and hardware, and the need for specialized expertise to operate and interpret the data, could pose challenges to market penetration. Nevertheless, the overall outlook remains positive, with a substantial increase in market size projected over the forecast period. The market's competitiveness is expected to intensify as more players enter the market and existing companies strive to enhance their product offerings to meet evolving customer demands.
According to our latest research, the global Geographic Information System (GIS) Software market size reached USD 11.6 billion in 2024, reflecting a robust demand for spatial data analytics and location-based services across various industries. The market is experiencing a significant growth trajectory, driven by a CAGR of 12.4% from 2025 to 2033. By the end of 2033, the GIS Software market is forecasted to attain a value of USD 33.5 billion. This remarkable expansion is primarily attributed to the integration of advanced technologies such as artificial intelligence, IoT, and cloud computing, which are enhancing the capabilities and accessibility of GIS platforms.
One of the major growth factors propelling the GIS Software market is the increasing adoption of location-based services across urban planning, transportation, and utilities management. Governments and private organizations are leveraging GIS solutions to optimize infrastructure development, streamline resource allocation, and improve emergency response times. The proliferation of smart city initiatives worldwide has further fueled the demand for GIS tools, as urban planners and municipal authorities require accurate spatial data for effective decision-making. Additionally, the evolution of 3D GIS and real-time mapping technologies is enabling more sophisticated modeling and simulation, expanding the scope of GIS applications beyond traditional mapping to include predictive analytics and scenario planning.
Another significant driver for the GIS Software market is the rapid digitization of industries such as agriculture, mining, and oil & gas. Precision agriculture, for example, relies heavily on GIS platforms to monitor crop health, manage irrigation, and enhance yield forecasting. Similarly, the mining sector uses GIS for exploration, environmental impact assessment, and asset management. The integration of remote sensing data with GIS software is providing stakeholders with actionable insights, leading to higher efficiency and reduced operational risks. Furthermore, the growing emphasis on environmental sustainability and regulatory compliance is prompting organizations to invest in advanced GIS solutions for monitoring land use, tracking deforestation, and managing natural resources.
The expanding use of cloud-based GIS solutions is also a key factor driving market growth. Cloud deployment offers scalability, cost-effectiveness, and remote accessibility, making GIS tools more accessible to small and medium enterprises as well as large organizations. The cloud model supports real-time data sharing and collaboration, which is particularly valuable for disaster management and emergency response teams. As organizations increasingly prioritize digital transformation, the demand for cloud-native GIS platforms is expected to rise, supported by advancements in data security, interoperability, and integration with other enterprise systems.
Regionally, North America remains the largest market for GIS Software, accounting for a significant share of global revenues. This leadership is underpinned by substantial investments in smart infrastructure, advanced transportation systems, and environmental monitoring programs. The Asia Pacific region, however, is witnessing the fastest growth, driven by rapid urbanization, government-led digital initiatives, and the expansion of the utility and agriculture sectors. Europe continues to demonstrate steady adoption, particularly in environmental management and urban planning, while Latin America and the Middle East & Africa are emerging as promising markets due to increasing investments in infrastructure and resource management.
The GIS Software market is segmented by component into Software and Services, each playing a pivotal role in the overall value chain. The software segment includes comprehensive GIS platforms, spatial analytics tools, and specialized applications
Click here to open the ArcGIS Online 3D Map Viewer and work through the examples shown belowTo add 3D data to ArcGIS Online you will need a login for an ArcGIS Online account. We would recommend that you use a free schools subscription (full functionality) or the free public account (reduced functionality).Login to ArcGIS OnlineFind Mount Everest and save the 3D map so that it opens with an amazing view of the mountainShare your 3D map with a friend or colleague and get some feed back
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recent advances in Computer Science and the spread of internet connection have allowed specialists to virtualize complex environments on the web and offer further information with realistic exploration experiences. At the same time, the fruition of complex geospatial datasets (point clouds, Building Information Modelling (BIM) models, 2D and 3D models) on the web is still a challenge, because usually it involves the usage of different proprietary software solutions, and the input data need further simplification for computational effort reduction. Moreover, integrating geospatial datasets acquired in different ways with various sensors remains a challenge. An interesting question, in that respect, is how to integrate 3D information in a 3D GIS (Geographic Information System) environment and manage different scales of information in the same application. Integrating a multiscale level of information is currently the first step when it comes to digital twinning. It is needed to properly manage complex urban datasets in digital twins related to the management of the buildings (cadastral management, prevention of natural and anthropogenic hazards, structure monitoring, etc.). Therefore, the current research shows the development of a freely accessible 3D Web navigation model based on open-source technology that allows the visualization of heterogeneous complex geospatial datasets in the same virtual environment. This solution employs JavaScript libraries based on WebGL technology. The model is accessible through web browsers and does not need software installation from the user side. The case study is the new building of the University of Twente-Faculty of Geo-Information (ITC), located in Enschede (the Netherlands). The developed solution allows switching between heterogeneous datasets (point clouds, BIM, 2D and 3D models) at different scales and visualization (indoor first-person navigation, outdoor navigation, urban navigation). This solution could be employed by governmental stakeholders or the private sector to remotely visualize complex datasets on the web in a unique visualization, and take decisions only based on open-source solutions. Furthermore, this system can incorporate underground data or real-time sensor data from the IoT (Internet of Things) for digital twinning tasks.
Urban green spaces are closely related to the abundance and biodiversity of birds by providing important habitats and together contribute to ecosystem health. This project aims to guide the University of British Columbia Botanical Garden to create Bird-friendly green spaces by using LiDAR data to analyze and map UBCBG's bird habitat suitability and create a 3D digital twin model of UBCBG in the open source game engine Minetest to increase 3D visualization and aid in landscape planning. By extracting the Canopy Height Model (CHM) using LiDAR data and performing individual tree segmentation, the derived metrics were used to identify trees with the highest bird habitat suitability index. The results showed that the suitability index ranges from -0.0016 to 0.5187, with a mean value of 0.2051. There are 68 trees with high suitability above the 0.4 intervals which have significance to bird populations and are worthy of being protected, accounting for only 3.38% of the total trees. They usually have a low vertical complexity index and foliage height diversity but are characterized by very tall trees with relatively large tree crowns. The Digital Elevation Model (DEM), Canopy Height Model (CHM) generated by LiDAR data were visualized in Minetest's UBCBG's 3D digital twin model using real terrain mod as topography and vegetation layers, while bird habitat suitability was used to symbolize the tree canopy layer. This study is highly relevant for landscape adaptation and planning in conjunction with other management considerations to support bird-friendly green spaces. The digital twin model can be used for educational and promotional purposes, and for landscape planning and aesthetic design with the consideration of bird conservation.
Important Note: This item is in mature support as of December 2024. See blog for more information.This web scene features OpenStreetMap (OSM) 3D buildings and trees layers hosted by Esri. Esri created the 3D scene layers of buildings and trees from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting the layers in this scene are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.
GIS In Telecom Sector Market Size 2025-2029
The GIS in telecom sector market size is forecast to increase by USD 2.35 billion at a CAGR of 15.7% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing adoption of Geographic Information Systems (GIS) for capacity planning in the telecommunications industry. GIS technology enables telecom companies to optimize network infrastructure, manage resources efficiently, and improve service delivery. Telecommunication assets and network management systems require GIS integration for efficient asset management and network slicing. However, challenges persist in this market. A communication gap between developers and end-users poses a significant obstacle.
Companies seeking to capitalize on opportunities in the market must focus on addressing these challenges, while also staying abreast of technological advancements and market trends. Effective collaboration between developers and end-users, coupled with strategic investments, will be essential for success in this dynamic market. Telecom companies must bridge this divide to ensure the development of user-friendly and effective GIS solutions. Network densification and virtualization platforms are key trends, allowing for efficient spectrum management and data monetization. Additionally, the implementation of GIS in the telecom sector requires substantial investment in technology and infrastructure, which may deter smaller players from entering the market.
What will be the Size of the GIS In Telecom Sector Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic telecom sector, GIS technology plays a pivotal role in customer analysis, network planning, and infrastructure development. Customer experiences are enhanced through location-based services and real-time data analysis, enabling telecom companies to tailor offerings and improve service quality. Network simulation and capacity planning are crucial for network evolution, with machine learning and AI integration facilitating network optimization and compliance with industry standards.
IOT connectivity and network analytics platforms offer valuable insights for smart city infrastructure development, with 3D data analysis and network outage analysis ensuring network resilience. Telecom industry partnerships foster innovation and collaboration, driving the continuous evolution of the sector. Consulting firms offer expertise in network compliance and network management, ensuring regulatory adherence and optimal network performance.
How is this GIS In Telecom Sector Industry segmented?
The gis in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Application
Mapping
Telematics and navigation
Surveying
Location based services
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period. In the telecom sector, the deployment of 5G networks is driving the need for advanced Geographic Information Systems (GIS) to optimize network performance and efficiency. GIS technology enables spatial analysis, network automation, capacity analysis, and bandwidth management, all crucial elements in the rollout of 5G networks. Large enterprises and telecom consulting firms are integrating GIS data into their operations for network planning, optimization, and troubleshooting. Machine learning and artificial intelligence are transforming GIS applications, offering predictive analytics and real-time network performance monitoring. Network virtualization and software-defined networking are also gaining traction, enhancing network capacity and improving network reliability and maintenance.
GIS software companies provide solutions for desktops, mobiles, cloud, and servers, catering to various industry needs. Smart city initiatives and location-based services are expanding the use cases for GIS in telecom, offering new opportunities for growth. Infrastructure deployment and population density analysis are critical factors in network rollout and capacity enhancement. Network security and performance monitoring are essential components of GIS applications, ensuring network resilience and customer experience management. Edge computing and network latency reduction are also signi
Click here to open the ArcGIS Online 3D Map Viewer and work through the examples shown belowTo add 3D data to ArcGIS Online you will need a login for an ArcGIS Online account. We would recommend that you use a free schools subscription (full functionality) or the free public account (reduced functionality).Login to ArcGIS OnlineSearch for layers in ArcGIS Online:
https://data.syrgov.net/pages/termsofusehttps://data.syrgov.net/pages/termsofuse
This is currently saved as a Scene Layer Package, which can be used by ArcGIS. To download the 3D Scene Layer, you have to first click the yellow "Open Content" button above, then this will take you to a separate screen where you can then click the blue "Download" button.If you are interested in a free trial of this software, you can visit the free trial section ESRI's Website HERE.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
This layer shows the Level 1 3D building models of Hong Kong. The 3D models were derived from the building polygon of iB1000. It is a subset of Digital Topographic Map made available by Lands Department under the Government of Hong Kong Special Administrative Region (the “Government”) at https://www.hkmapservice.gov.hk/ (“HKMS 2.0”). The source data is in Esri File Geodatabase format and uploaded to Esri’s ArcGIS Online platform for sharing and referencing purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.
Use the 3D Viewer template to showcase your scene with default 3D navigation tools, including zoom controls, pan, rotate, and compass. Include a locator map and bookmarks to provide context to your scene and guide app viewers to points of interest. Line of sight, measure, and slice tools allow viewers to interpret 3D data. Set the option to disable scrolling in the app to seamlessly embed this app in another app or site. Examples: Present a detailed 3D view of a mountainous region at a large scale while the 2D inset map provides context of where you are in the world. Display a 3D plan for new urban development that app viewers can explore with slice and measurement tools. Allow users to visualize the impact of shadows on a scene using daylight animation. Data requirements The 3D Viewer template requires a web scene. Key app capabilities 3D navigation and Compass tool - Allow app users to pan or rotate the scene and orient their view to north. Locator map - Display an inset map with the app's map area in the context of a broader area. Line of sight - Visualize whether one or multiple targets are visible from an observer point. Measurement tools - Provide tools that measure distance and area and find and convert coordinates. Slice - Excludes specific layers to change the view of a scene. Bookmarks - Provide a collection of preset extents that are saved in the scene to which users can navigate the map. Disable scroll - Prevent the map from zooming when app users scroll Language switcher - Provide translations for custom text and create a multilingual app. Home, Zoom controls, Legend, Layer List, Search Supportability This web app is designed responsively to be used in browsers on desktops, mobile phones, and tablets. We are committed to ongoing efforts towards making our apps as accessible as possible. Please feel free to leave a comment on how we can improve the accessibility of our apps for those who use assistive technologies.
https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy
The geospatial market is estimated to reach a value of USD 105.06 billion by 2033, growing at a CAGR of 9.1% during the forecast period of 2025-2033. This growth is attributed to the rising demand for geospatial data and services across various end-user industries, such as real estate and construction, automotive, utility and communication, government, defense and intelligence, and natural resources. Key drivers of the market include the increasing adoption of location-based services, the growing use of geospatial data for decision-making, and the rapid advancements in geospatial technologies. The market is segmented by type (surface analytics, network analytics, geovisualization, and others), technology (remote sensing, GPS, GIS, and others), and end-user (real estate and construction, automotive, utility and communication, government, defense and intelligence, natural resources, and others). North America is the largest regional market, followed by Europe, Asia Pacific, and the Middle East and Africa. Key companies in the geospatial market include Hexagon AB, Trimble Inc., Maxar Technologies, MDA Corporation, Fugro, Cyient, Esri, Bentley Systems, Incorporated, NV5 Global Inc., General Electric Company, Accenture, and RMSI. Recent developments include: In February 2023, U.S. Army has extended its contract with Maxar Technologies to provide 3D geospatial data used to create immersive digital environments. Maxar was awarded Phase 3b of the U.S. Army’s One World Terrain (OWT) contract originally awarded in 2019 to Vricon, a company Maxar acquired in 2020. Vricon uses data from Maxar’s imaging satellites to make 3D mapping products. In September 2023, Trimble and Kyivstar Partner to Provide GNSS Correction Services for Agriculture, Construction and Geospatial Applications in Ukraine. It will install a new Continuously Operating Reference Station (CORS) network to provide Global Navigation Satellite System (GNSS) correction services across the country. Available to users as an annual subscription service, the new network will be built using Trimble's hardware and software positioning technology, which provides customers with easy and reliable high-accuracy real time or post-processed GNSS corrections data for agriculture, construction, geospatial, Internet of Things (IoT) and other commercial operations. . Key drivers for this market are: Growing demand for accurate and actionable geospatial data
Advancements in cloud computing and AI technologies
Increasing adoption of location-based services and IoT devices
Need for sustainable resource management and environmental monitoring
Government initiatives and investments in geospatial infrastructure. Potential restraints include: Data privacy and security concerns
Lack of skilled workforce and technical expertise
High cost of implementing and maintaining geospatial solutions
Interoperability issues between different geospatial platforms
Limited awareness of the benefits of geospatial technologies. Notable trends are: The integration of AI and IOT fuels Integration of blockchain technology for data security and transparency
Development of open-source geospatial platforms and applications
Use of AI and machine learning for predictive analytics and automation
Focus on interconnected and interoperable geospatial ecosystems
Growing adoption of geospatial solutions in emerging marketsmarket expansion is expected to drive market growth..
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains a GIS vector polygons of 44 3D seismic survey areas underaken in seas around Ireland. Data includes contractor, line, survey Id, company, vessel, survey area name, project code and prefix details. The data has been collected in seas around Ireland including the North Atlantic Ocean, Irish Sea, Saint George's Channel and Celtic Sea. The data has been collected for the period 1982-2014. The imaging deficiencies of 2D seismic profiling were remedied by the implementation of 3D seismic data acquisition, which allows data processing to migrate reflections to their correct image coordinates in 3D space. Seismic surveys are used to produce detailed images of local geology to determine the location and size of possible oil and gas reservoirs. Data has been collated by the Petroleum Affairs Division as part of its role to maximise the benefits to the Irish State from exploration for and production (E and P) of indigenous oil and gas resources. The dataset is considered an accurate recorded representation of 3D seismic surveys completed and logged by the Petroleum Affairs Division.
Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu.We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024.Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area.The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857.For using these data:- The Adobe Suite gives you great software to open .Tif files.- You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains.- Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk.- You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files.- The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file.This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.
Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) buildings data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.