Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) trees data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.
The TopoBathy 3D layer provides a global seamless topography (land elevation) and bathymetry (water depths) surface to use in ArcGIS 3D applications.What can you do with this layer?This layer is meant to be used as a ground in ArcGIS Online Web Scenes, ArcGIS Earth, and ArcGIS Pro to help visualize your maps and data in 3D.How do I use this layer?In the ArcGIS Online Web Scene Viewer:Sign-in with ArcGIS Online accountOn the Designer toolbar, click Add Layers Click Browse layers and choose Living Atlas.Search for TopoBathy 3DAdd TopoBathy 3D (Elevation Layer)The TopoBathy 3D will get added under Ground. Change basemap to OceansOptionally, add any other operational layers to visualize in 3DIn ArcGIS Pro:Ensure you are logged in with an ArcGIS Online accountOpen a Global SceneOn the Map tab, click Add Data > Elevation Source LayerUnder Portal, click Living Atlas and search for TopoBathy 3DSelect TopoBathy 3D (Elevation Layer) and click OKThe TopoBathy 3D will get added under GroundOptionally, remove other elevation layers from ground and choose the desired basemapDataset Coverage To see the coverage and sources of various datasets comprising this elevation layer, view the Elevation Coverage Map. Additionally, this layer uses data from Maxar’s Precision 3D Digital Terrain Models for parts of the globe.
The Terrain 3D layer provides global elevation surface to use in ArcGIS 3D applicationsWhat can you do with this layer?Use this layer to visualize your maps and layers in 3D using applications like the Scene Viewer in ArcGIS Online and ArcGIS Pro. Show me how1) Working with Scenes in ArcGIS Pro or ArcGIS Online Scene Viewer2) Select an appropriate basemap or use your own3) Add your unique 2D and 3D data layers to the scene. Your data are simply added on the elevation. If your data have defined elevation (z coordinates) this information will be honored in the scene4) Share your work as a Web Scene with others in your organization or the publicDataset Coverage To see the coverage and sources of various datasets comprising this elevation layer, view the Elevation Coverage Map. Additionally, this layer uses data from Maxar’s Precision 3D Digital Terrain Models for parts of the globe.This layer is part of a larger collection of elevation layers. For more information, see the Elevation Layers group on ArcGIS Online.
Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) buildings data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.
This deep learning model is used for extracting windows and doors in textured building data displayed in 3D views. Manually digitizing windows/doors from 3D building data can be a slow process. This model automates the extraction of these objects from a 3D view and can help in speeding up 3D editing and analysis workflows. Using this model, existing building data can be enhanced with additional information on location, size and orientation of windows and doors. The extracted windows and doors can be further used to perform 3D visibility analysis using existing 3D geoprocessing tools in ArcGIS.This model can be useful in many industries and workflows. National Government and state-level law enforcement could use this model in security analysis scenarios. Local governments could use windows and door locations to help with tax assessments with CAMA (computer aided mass appraisal) plus impact-studies for urban planning. Public safety users might be interested in regards to physical or visual access to restricted areas, or the ability to build evacuation plans. The commercial sector, with everyone from real-estate agents to advertisers to office/interior designers, would be able to benefit from knowing where windows and doors are located. Even utilities, especially mobile phone providers, could take advantage of knowing window sizes and positions. To be clear, this model doesn't solve these problems, but it does allow users to extract and collate some of the data they will need to do it.Using the modelThis model is generic and is expected to work well with a variety of building styles and shapes. To use this model, you need to install supported deep learning frameworks packages first. See Install deep learning frameworks for ArcGIS for more information. The model can be used with the Interactive Object Detection tool.A blog on the ArcGIS Pro tool that leverages this model is published on Esri Blogs. We've also published steps on how to retrain this model further using your data.InputThe model is expected to work with any textured building data displayed in 3D views. Example data sources include textured multipatches, 3D object scene layers, and integrated mesh layers. OutputFeature class with polygons representing the detected windows and doors in the input imagery. Model architectureThe model uses the FasterRCNN model architecture implemented using ArcGIS API for Python.Training dataThis model was trained using images from the Open Images Dataset.Sample resultsBelow, are sample results of the windows detected with this model in ArcGIS Pro using the Interactive Object Detection tool, which outputs the detected objects as a symbolized point feature class with size and orientation attributes.
Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu. We captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024. Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each area. The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857. For using these data: - The Adobe Suite gives you great software to open .Tif files. - You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains. - Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk. - You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files. - The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file. This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Focus on Geodatabases in ArcGIS Pro introduces readers to the geodatabase, the comprehensive information model for representing and managing geographic information across the ArcGIS platform.Sharing best practices for creating and maintaining data integrity, chapter topics include the careful design of a geodatabase schema, building geodatabases that include data integrity rules, populating geodatabases with existing data, working with topologies, editing data using various techniques, building 3D views, and sharing data on the web. Each chapter includes important concepts with hands-on, step-by-step tutorials, sample projects and datasets, 'Your turn' segments with less instruction, study questions for classroom use, and an independent project. Instructor resources are available by request.AUDIENCEProfessional and scholarly.AUTHOR BIODavid W. Allen has been working in the GIS field for over 35 years, the last 30 with the City of Euless, Texas, and has seen many versions of ArcInfo and ArcGIS come along since he started with version 5. He spent 18 years as an adjunct professor at Tarrant County College in Fort Worth, Texas, and now serves as the State Director of Operations for a volunteer emergency response group developing databases and templates. Mr. Allen is the author of GIS Tutorial 2: Spatial Analysis Workbook (Esri Press, 2016).Pub Date: Print: 6/17/2019 Digital: 4/29/2019 Format: PaperbackISBN: Print: 9781589484450 Digital: 9781589484467 Trim: 7.5 x 9.25 in.Price: Print: $59.99 USD Digital: $59.99 USD Pages: 260
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Southeast Texas Urban Integrated field lab’s Co-design team captured aerial photos in the Port Arthur Coastal Neighborhood Community and the Golf Course on Pleasure Island, Texas, in June 2024. Aerial photos taken were through autonomous flight, and models were processed through the DroneDeploy engine. All aerial photos are in .JPG format and contained in zipped files for each area. The processed data package includes 3D models, geospatial data, mappings, and point clouds. Please be aware that DTM, Elevation toolbox, Point Cloud, and Orthomosaic use EPSG: 6588. And 3D Model uses EPSG: 3857. For using these data: - The Adobe Suite gives you great software to open .Tif files. - You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains. - Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk. - You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files. - The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file. This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset will support researchers' decision-making processes under uncertainties.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This New Zealand car detection Deep Learning Package will detect cars from high resolution imagery. This model is re-trained from the Esri Car Detection - USA Deep Learning Package and is trained to work better within the New Zealand geography.The model precision had also improved from 0.81 to 0.89. The package is trained to be more aggressive in terms of car detecting and is able to detect most cars that are fully covered in shade or partially blocked by tree canopy. This deep learning model is used to detect cars in high resolution drone or aerial imagery. Car detection can be used for applications such as traffic management and analysis, parking lot utilization, urban planning, etc. It can also be used as a proxy for deriving economic indicators and estimating retail sales. High resolution aerial and drone imagery can be used for car detection due to its high spatio-temporal coverage.Licensing requirementsArcGIS Desktop – ArcGIS Image Analyst and ArcGIS 3D Analyst extensions for ArcGIS ProArcGIS Online – ArcGIS Image for ArcGIS OnlineUsing the modelFollow the guide to use the model. Before using this model, ensure that the supported deep learning libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.InputHigh resolution RGB imagery (7.5 centimetre spatial resolution)OutputFeature class containing detected carsApplicable geographiesThe model is expected to work well with the New Zealand localised data.Model architectureThis model uses the MaskRCNN model architecture implemented in ArcGIS Pro Arcpy.Accuracy metricsThis model has an average precision score of 0.89.Sample resultsHere are a few results from the model.(Post processing are recommended to filter out False Positive Object.e.g (confidence >= x | 0.95) |& ((shape_area/shape_length) >= x | 0.5) |& (class == Car) |& Regularize(feature)3% of detected object will need to be filtered out averagely .To learn how to use this model, see this story
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
scripts.zip
arcgisTools.atbx: terrainDerivatives: make terrain derivatives from digital terrain model (Band 1 = TPI (50 m radius circle), Band 2 = square root of slope, Band 3 = TPI (annulus), Band 4 = hillshade, Band 5 = multidirectional hillshades, Band 6 = slopeshade). rasterizeFeatures: convert vector polygons to raster masks (1 = feature, 0 = background).
makeChips.R: R function to break terrain derivatives and chips into image chips of a defined size. makeTerrainDerivatives.R: R function to generated 6-band terrain derivatives from digital terrain data (same as ArcGIS Pro tool). merge_logs.R: R script to merge training logs into a single file. predictToExtents.ipynb: Python notebook to use trained model to predict to new data. trainExperiments.ipynb: Python notebook used to train semantic segmentation models using PyTorch and the Segmentation Models package. assessmentExperiments.ipynb: Python code to generate assessment metrics using PyTorch and the torchmetrics library. graphs_results.R: R code to make graphs with ggplot2 to summarize results. makeChipsList.R: R code to generate lists of chips in a directory. makeMasks.R: R function to make raster masks from vector data (same as rasterizeFeatures ArcGIS Pro tool).
vfillDL.zip
dems: LiDAR DTM data partitioned into training, three testing, and two validation datasets. Original DTM data were obtained from 3DEP (https://www.usgs.gov/3d-elevation-program) and the WV GIS Technical Center (https://wvgis.wvu.edu/) . extents: extents of the training, testing, and validation areas. These extents were defined by the researchers. vectors: vector features representing valley fills and partitioned into separate training, testing, and validation datasets. Extents were created by the researchers.
This dynamic image service provides float values representing ground heights in meters, based on 3DEP seamless 1 arc-second data from USGS 3D Elevation Program (3DEP). Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: AnnuallyCoverage: conterminous United States, Hawaii, Alaska, Puerto Rico, Territorial Islands of the United States; Canada and Mexico.Data Source: The data for this layer comes from 3DEP seamless 1 arc-second dataset from the USGS's 3D Elevation Program with original source data in its native coordinate system.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as hillshade, slope, consider using the appropriate server-side function defined on this service.
Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. The layer is restricted to a 24,000 x 24,000 pixel limit.
NOTE: The image service uses North America Albers Equal Area Conic projection (WKID: 102008) and resamples the data dynamically to the requested projection, extent and pixel size. For analyses requiring the highest accuracy, when using ArcGIS Desktop, you will need to use native coordinates (GCS_North_American_1983, WKID: 4269) and specify the native resolutions (0.0002777777777779 degrees) as the cell size geoprocessing environment setting and ensure that the request is aligned with the source pixels.
Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates. Slope Degrees Slope Percentage Aspect Hillshade Slope Degrees MapThis layer has query, identify, and export image services available. The layer is restricted to a 24,000 x 24,000 pixel limit.
This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Our Co-design team is from the University of Texas, working on a Department of Energy-funded project focused on the Beaumont-Port Arthur area. As part of this project, we will be developing climate-resilient design solutions for areas of the region. More on www.caee.utexas.edu.We used a DJI Mavic 2 Pro to capture aerial photos in Beaumont-Port Arthur, TX, in February 2023, including:I. Beaumont Soccer ClubII. Corps’ Port Arthur Resident OfficeIII. Halbouty Pump Station comprises its vicinityIV. Lamar University (Including Exxon Power Plants close to Lamar Univ.)V. MLK Boulevard for aerial images of the industry and the ship channelVI. Salt Water Barrier (include some aerial images about the Big Thicket)Aerial photos taken were through DroneDeploy autonomous flight, and models were processed through the DroneDeploy engine as well. All aerial photos are in .JPG format and contained in zipped files for each location.The processed data package including 3D models, geospatial data, mappings, point clouds, and the animation video of Halbouty Pump Station has various file types:- The Adobe Suite gives you great software to open .Tif files.- You can use LASUtility (Windows), ESRI ArcGIS Pro (Windows), or Blaze3D (Windows, Linux) to open a LAS file and view the data it contains.- Open an .OBJ file with a large number of free and commercial applications. Some examples include Microsoft 3D Builder, Apple Preview, Blender, and Autodesk.- You may use ArcGIS, Merkaartor, Blender (with the Google Earth Importer plug-in), Global Mapper, and Marble to open .KML files.- The .tfw world file is a text file used to georeference the GeoTIFF raster images, like the orthomosaic and the DSM. You need suitable software like ArcView to open a .TFW file.This dataset provides researchers with sufficient geometric data and the status quo of the land surface at the locations mentioned above. This dataset could streamline researchers' decision-making processes and enhance the design as well.In October 2023, we had our follow-up data collection, including:I. Beaumont Soccer ClubII. Shipping and Receiving Center at Lamar UniversityAfter the aerial collection, we obtained aerial photos of those two locations mentioned above, as well as processed data (such as point clouds and models).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Discover how to display and symbolize both 2D and 3D data. Search, access, and create new map symbols. Learn to specify and configure text symbols for your map. Complete your map by creating an effective layout to display and distribute your work.
TopoBathy 3D provides global elevation and bathymetry to use as a ground surface in 3D applications such as ArcGIS Pro, ArcGIS Online webscene. Heights/Depths are orthometric (in meters) and are based on multiple sources. This elevation layer compiles data from multiple sources ranging from 1000m - 50cm (see Elevation Coverage Map for details.). For more information on this service, including the terms of use, visit us online.
This downloadable zip file contains an ESRI File Geodatabase that is compatible with most versions of ArcGIS Pro, ArcMap, and AutoCAD Map 3D or Civil 3D. To view the geodatabase’s contents, please download the zip file to a local directory and extract its contents. This zipped geodatabase will require approximately 1.57 GB of disc space (1.73 GB extracted). Due to its size, the zip file may take some time to download.The geodatabase in the download includes the following layers:2 foot contours, Spot Elevations, Breaklines2015 LiDAR derived 2ft topographic contours for Tallahassee and Leon County, Florida. Topographic contours re-projected from NAD83 State Plane to Web Mercator. Source data vertical datum NAVD88.TLCGIS regularly uses digital orthophotos and planimetric/hydrographic/topographic data to support regulatory functions, land management and acquisition, planning, engineering and habitat restoration projects.This dataset is part of a regularly scheduled update of LiDAR and digital orthophotography products. The dataset was created from source imagery acquired by a Trimble TAC80 natural color digital camera and LAS data acquired by a Optech ALTM HA500 (Pegasus) LIDAR sensor from January 18, 2015 to February 5, 2015.
This downloadable zip file contains an ESRI File Geodatabase that is compatible with most versions of ArcGIS Pro, ArcMap, and AutoCAD Map 3D or Civil 3D. To view the geodatabase’s contents, please download the zip file to a local directory and extract its contents.This content in this file geodatabase consist of planimetric layers identifiable in the orthoimagery collected for Leon County, FL in January, 2021. TLCGIS regularly uses digital orthophotos and planimetric/hydrographic/topographic data to support regulatory functions, land management and acquisition, planning, engineering and habitat restoration projects.This dataset is part of a regularly scheduled update of LiDAR and digital orthophotography products. The dataset was created from source imagery acquired by a Leica ADS100 multispectral aerial mapping camera from January 5-18, 2021. Planimetric Layers:BridgesBuildings - Buildings feature class contains all buildings 100 square feet or greater that are visible in the 2021 orthoimagery. Hydro LinesHydro PolygonsImperv - Impervious Surface includes Airport, Building, Landscape Island, Paved Driveway, Paved Island, Paved Parking, Paved Road, Paved Road Over Bridge, Ruin, Sidewalk, Sidewalk Over Sidewalk, Tennis Court, Unfinished Building, Unpaved Driveway, Unpaved Parking, Unpaved Road, and WaterbodyImpervHydroProjectBoundaryRdedge - Road edges were extracted from the impervious surfaces data from 2021 using paved roads, unpaved roads, paved driveways, and unpaved driveways.
This is a bathymetry-only view of the World Topographic Basemap. Sometimes you just need the bathymetry and don't want the not-thymetry.Where can you use it? Pretty much anywhere you might want a bathymetric layer. This vector tile layer can be used in an ArcGIS Online web map or scene, 2D or 3D ArcGIS Pro map, or any application using the ArcGIS API for Javascript. It's just like, a layer.If you are interested in learning how to isolate layers in vector basemaps yourself, here is a YouTube video with all the glorious details. The underlying data is untouched and unmoved, but his creates a custom "view" of the source basemap.Here it is all by itself in ArcGIS Online......and with an imagery basemap.Here it is in an ArcGIS Pro 3D map...Happy mapping, basemap surgeons! John Nelson
Important Note: This item is in mature support as of December 2024. See blog for more information.This 3D scene layer presents OpenStreetMap (OSM) trees data hosted by Esri. Esri created buildings and trees scene layers from the OSM Daylight map distribution, which is supported by Facebook and others. The Daylight map distribution has been sunsetted and data updates supporting this layer are no longer available. You can visit openstreetmap.maps.arcgis.com to explore a collection of maps, scenes, and layers featuring OpenStreetMap data in ArcGIS. You can review the 3D Scene Layers Documentation to learn more about how the building and tree features in OSM are modeled and rendered in the 3D scene layers, and see tagging recommendations to get the best results.OpenStreetMap is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap site: www.OpenStreetMap.org. Esri is a supporter of the OSM project.Note: This layer is supported in Scene Viewer and ArcGIS Pro 3.0 or higher.