100+ datasets found
  1. Countries with the largest population 2025

    • statista.com
    • ai-chatbox.pro
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth

  2. Largest countries in the world by area

    • statista.com
    • ai-chatbox.pro
    Updated Aug 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Largest countries in the world by area [Dataset]. https://www.statista.com/statistics/262955/largest-countries-in-the-world/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    World
    Description

    The statistic shows the 30 largest countries in the world by area. Russia is the largest country by far, with a total area of about 17 million square kilometers.

    Population of Russia

    Despite its large area, Russia - nowadays the largest country in the world - has a relatively small total population. However, its population is still rather large in numbers in comparison to those of other countries. In mid-2014, it was ranked ninth on a list of countries with the largest population, a ranking led by China with a population of over 1.37 billion people. In 2015, the estimated total population of Russia amounted to around 146 million people. The aforementioned low population density in Russia is a result of its vast landmass; in 2014, there were only around 8.78 inhabitants per square kilometer living in the country. Most of the Russian population lives in the nation’s capital and largest city, Moscow: In 2015, over 12 million people lived in the metropolis.

  3. Countries with the smallest population 2024

    • ai-chatbox.pro
    • statista.com
    Updated Mar 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Countries with the smallest population 2024 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F776%2Fpopulation%2F%23XgboDwS6a1rKoGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Mar 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The Vatican City, often called the Holy See, has the smallest population worldwide, with only 496 inhabitants. It is also the smallest country in the world by size. The islands Niue, Tuvalu, and Nauru followed in the next three positions. On the other hand, India is the most populated country in the world, with over 1.4 billion inhabitants.

  4. Countries with the highest number of internet users 2025

    • statista.com
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest number of internet users 2025 [Dataset]. https://www.statista.com/statistics/262966/number-of-internet-users-in-selected-countries/
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    World
    Description

    As of February 2025, China ranked first among the countries with the most internet users worldwide. The world's most populated country had 1.11 billion internet users, more than triple the third-ranked United States, with just around 322 million internet users. Overall, all BRIC markets had over two billion internet users, accounting for four of the ten countries with more than 100 million internet users. Worldwide internet usage As of October 2024, there were more than five billion internet users worldwide. There are, however, stark differences in user distribution according to region. Eastern Asia is home to 1.34 billion internet users, while African and Middle Eastern regions had lower user figures. Moreover, the urban areas showed a higher percentage of internet access than rural areas. Internet use in China China ranks first in the list of countries with the most internet users. Due to its ongoing and fast-paced economic development and a cultural inclination towards technology, more than a billion of the estimated 1.4 billion population in China are online. As of the third quarter of 2023, around 87 percent of Chinese internet users stated using WeChat, the most popular social network in the country. On average, Chinese internet users spent five hours and 33 minutes online daily.

  5. Countries in Europe, by area

    • ai-chatbox.pro
    • statista.com
    Updated May 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries in Europe, by area [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F1277259%2Fcountries-europe-area%2F%23XgboD02vawLbpWJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Europe
    Description

    Russia is the largest country in Europe, and also the largest in the world, its total size amounting to 17 million square kilometers (km2). It should be noted, however, that over three quarters of Russia is located in Asia, and the Ural mountains are often viewed as the meeting point of the two continents in Russia; nonetheless, European Russia is still significantly larger than any other European country. Ukraine, the second largest country on the continent, is only 603,000 km2, making it about 28 times smaller than its eastern neighbor, or seven times smaller than the European part of Russia. France is the third largest country in Europe, but the largest in the European Union. The Vatican City, often referred to as the Holy Sea, is both the smallest country in Europe and in the world, at just one km2. Population Russia is also the most populous country in Europe. It has around 144 million inhabitants across the country; in this case, around three quarters of the population live in the European part, which still gives it the largest population in Europe. Despite having the largest population, Russia is a very sparsely populated country due to its size and the harsh winters. Germany is the second most populous country in Europe, with 83 million inhabitants, while the Vatican has the smallest population. Worldwide, India and China are the most populous countries, with approximately 1.4 billion inhabitants each. Cities Moscow in Russia is ranked as the most populous city in Europe with around 13 million inhabitants, although figures vary, due to differences in the methodologies used by countries and sources. Some statistics include Istanbul in Turkey* as the largest city in Europe with its 15 million inhabitants, bit it has been excluded here as most of the country and parts of the city is located in Asia. Worldwide, Tokyo is the most populous city, with Jakarta the second largest and Delhi the third.

  6. Total population of the BRICS countries 2000-2030

    • ai-chatbox.pro
    • statista.com
    Updated Jun 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron O'Neill (2025). Total population of the BRICS countries 2000-2030 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstudy%2F9896%2Fchina-statista-dossier%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Aaron O'Neill
    Description

    In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.

  7. M

    World Population (1950-2025)

    • macrotrends.net
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Population (1950-2025) [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    world, World
    Description
    Total current population for the world in 2025 is 8,191,988,453, a 0.9% increase from 2024.
    <ul style='margin-top:20px;'>
    
    <li>Total population for the world in 2024 was <strong>8,118,835,999</strong>, a <strong>0.71% increase</strong> from 2023.</li>
    <li>Total population for the world in 2023 was <strong>8,061,876,001</strong>, a <strong>0.9% increase</strong> from 2022.</li>
    <li>Total population for the world in 2022 was <strong>7,989,981,520</strong>, a <strong>0.87% increase</strong> from 2021.</li>
    </ul>Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.
    
  8. T

    POPULATION by Country in ASIA

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). POPULATION by Country in ASIA [Dataset]. https://tradingeconomics.com/country-list/population?continent=asia
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Asia
    Description

    This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  9. COVID-19 Trends in Each Country-Copy

    • unfpa-stories-unfpapdp.hub.arcgis.com
    • hub.arcgis.com
    • +2more
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://unfpa-stories-unfpapdp.hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fundhttp://www.unfpa.org/
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  10. Total population APAC 2023, by country

    • ai-chatbox.pro
    • statista.com
    Updated Nov 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total population APAC 2023, by country [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F632565%2Fasia-pacific-total-population-by-country%2F%23XgboD02vawLZsmJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Asia–Pacific
    Description

    India's total population reached nearly 1.43 billion people as of 2023, making the country by far the most populous throughout the Asia-Pacific region. Contrastingly, Micronesia had a total population of around 115 thousand people in the same year. The demographics of APAC Asia-Pacific, made up of many different countries and regions, is the most populated region across the globe. Being home to a significant number of megacities, and with the population ever-increasing, the region is unsurprisingly expected to have the largest urban population by 2050. However, as of 2021, the majority of Asia-Pacific countries had rural populations greater than 50 percent.  Population densities Despite China being the most populated country across the region, it fell in the middle of Asia-Pacific regions in terms of population density. On the other hand, Macao, Singapore, and Hong Kong all had the highest population densities across the Asia-Pacific region. These three Asia-Pacific regions also ranked among the top four densest populations worldwide.   

  11. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 27, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  12. Data set: 50 Muslim-majority countries and 50 richest non-Muslim countries...

    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ponn P Mahayosnand; Gloria Gheno (2023). Data set: 50 Muslim-majority countries and 50 richest non-Muslim countries based on GDP: Total number of COVID-19 cases and deaths on September 18, 2020 [Dataset]. http://doi.org/10.6084/m9.figshare.14034938.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Ponn P Mahayosnand; Gloria Gheno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info

  13. k

    Future of African Remittances: National Surveys 2010 - Kenya

    • statistics.knbs.or.ke
    • catalog.ihsn.org
    • +3more
    Updated Jun 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Edward Al-Hussainy (2022). Future of African Remittances: National Surveys 2010 - Kenya [Dataset]. https://statistics.knbs.or.ke/nada/index.php/catalog/46
    Explore at:
    Dataset updated
    Jun 1, 2022
    Dataset authored and provided by
    Edward Al-Hussainy
    Time period covered
    2010
    Area covered
    Kenya
    Description

    Abstract

    The Future of African Remittances (FAR) team conducted research on remittance flows to measure and understand the remittance process in sub-Saharan Africa. This ambitious and important research is initially focused on three countries in East Africa - Ethiopia, Kenya and Uganda.

    In order to glean insights into the remittance process in the three designated countries, the World Bank designed a two-phase survey process. Phase 1 involved conducting a national survey in each of the three countries. The purpose of the first phase of research was to collect a large representative sample of the adult population in each country. The national surveys provide important baseline data about international remittance flows including: an estimate of the percent of the total adult population that regularly receives remittances, the average amount of each remittance received, most common methods of receipt and top sending countries. Additionally, through the analysis of the national survey results, World Bank was able to identify areas of each country that have high concentrations of international remittance recipients. This important piece of information guided Phase 2 of the research - surveys of remittance receivers in each country. Whereas the national surveys aimed to collect general data about the remittance process, the surveys of remittance recipients allowed for the collection of more detailed data about the remittance process itself, how remittances are used, the relationship between sender and receiver, and interest in various financial products.

    The results of this research will not only provide estimates of total annual amounts of remittances for each country, but also will tell us the percentage of the population in each country that is involved in the international remittance process. Furthermore, it will offer insights as to the degree to which Ethiopians, Kenyans and Ugandans depend on international remittances and how the money is used, saved and/or invested. Results will also measure interest in financial products that, if utilized, can significantly impact the financial well-being of the population and the overall economic stability of each country.

    Geographic coverage

    National Coverage

    Analysis unit

    Households Individuals

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    General:

    The total samples were compiled utilizing multi-stage stratified random sampling through respondent selection. Multi-stage random sampling ensured that a random sample of adults was collected in each country. First, after stratifying the population of each country by region and population density, sampling points (SPs) were determined. SPs were then randomly selected within each stratum. At each SP, respondents were randomly selected to participate in the survey.

    Phase 1:

    The first phase consisted of national surveys of the adult population of each country. The three survey samples were designed to be representative of the adult populations of these three countries. World Bank coordinated and oversaw all aspects of the sampling and interviewing process. A team of local field experts was hired in each country to conduct the actual interviews. All interviewers were professionally trained and supervised by research personnel. In this phase of the research, a total of 2022 Kenyan adults were interviewed.

    Phase 2:

    Once the national surveys were completed, the results were analyzed to determine the areas of concentration of the remittance recipient population, after which the second phase of the project was conducted. This phase of the project included a targeted survey of the remittance recipient population of each of the three East African countries. Sampling Points were established based on the analysis of the national survey data and the identification of areas within each country that showed the highest concentrations of remittances received from relatives abroad in proportion to the sample size of all areas surveyed. Once again, local field experts were hired in each country to conduct the interviews, training and supervision of field operations. Languages of interviews were the same as those employed in Phase 1 and, again, all interviews were conducted in person using the PAPI method. A total of 400 interviews with regular international remittance recipients were completed in each country during August and September of 2010. The margin of error for all three surveys is approximately ±5 percentage points and the 95 percent level of confidence.

    Detail:

    The total sample was compiled utilizing multi-stage stratified random sampling through respondent selection. This sampling method enabled B&A to ensure that a representative random sample of Kenyan adults was collected. There are three stages to this type of sampling methodology. First, after stratifying the Kenyan population by region and population density, sampling points (SPs) were determined. SPs were then randomly selected within each stratum. In the second stage, using the random route method, dwellings were selected within each SP. The random route method involves selecting an address in each SP at random as a starting point. Each interviewer was given instructions to identify additional dwellings by taking alternate left and right turns and stopping at every Nth dwelling. The third and final stage involved selecting actual participants - for each selected dwelling, individual respondents were chosen using a Kish grid. In a Kish grid, prior to beginning the interview, the interviewer first asks for the ages and genders of every household member (only persons aged 18 or older were eligible for selection). The individual to be interviewed was then chosen based on a random number in the grid.

    Once the national survey was completed, B&A analyzed the results to determine the areas of concentration of the remittance recipient population, after which the second phase of the project was conducted. This phase included a targeted survey of the remittance recipient population in Kenya. Sampling Points were established based on B&A's analysis of the national survey data and the identification of areas of the country that showed concentrations of international remittance receivers in proportion to the sample size of all areas surveyed. Once again, local field experts were hired to conduct the interviews and B&A conducted all training and supervision of field operations. Interviews were conducted in English or Swahili depending on respondent preference and all interviews were conducted in person using the PAPI method. A total of 401 interviews with regular international remittance recipients were conducted in Kenya during August and September of 2010. The margin of error for the surveys is approximately ±5 percentage points and the 95 percent level of confidence.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Phase 1:

    This survey consisted of 12 questions that were aimed at helping to identify some of the basic characteristics of the remittance recipient population in each country. Some of the variables included in this survey were - location, age, gender, amount of money received, method of receipt, origin of remittance, etc.

    Phase 2:

    The survey instrument for Phase 2 consisted of approximately 35 questions and included a number of variables aimed at obtaining greater detail about the remittance receiving process including costs, amounts received, information about the sender and the relationship between sender and receiver. Additionally, the survey measured interest in various financial products.

    Response rate

    Every effort was made to achieve the maximum possible coverage, taking cost, timing and other factors into account. A coverage rate of 85% was achieved in the national survey and the 15% of the country that was not covered consisted of areas that were either very remote (and difficult to travel to) or that had extremely small populations.

    Sampling error estimates

    The margin of error is approximately ±5 percentage points and the 95 percent level of confidence.

  14. Countries with the most Facebook users 2024

    • ai-chatbox.pro
    • statista.com
    Updated Mar 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Countries with the most Facebook users 2024 [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F1559%2Ffacebook-marketing%2F%23XgboD02vawLZsmJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Mar 18, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Which county has the most Facebook users? There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively. Facebook – the most used social media Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising. Facebook usage by device As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.

  15. n

    Module 3 Lesson 2 – Teacher – Thinking Spatially Using GIS

    • library.ncge.org
    Updated Jun 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). Module 3 Lesson 2 – Teacher – Thinking Spatially Using GIS [Dataset]. https://library.ncge.org/documents/be958693017f4166b2d993865942933d
    Explore at:
    Dataset updated
    Jun 8, 2020
    Dataset authored and provided by
    NCGE
    Description

    Thinking Spatially Using GIS

    Thinking Spatially Using GIS is a 1:1 set of instructional materials for students that use ArcGIS Online to teach basic geography concepts found in upper elementary school and above.
    Each module has both a teacher and student file.

    The United States population has grown quickly during the past several hundred years. Keeping track of the nation’s population dates to the country’s origins. The U.S. Constitution adopted in 1787 called for a population count every 10 years, starting in 1790. This process, called the census, would keep track of the population, its activities, and its movements. More importantly, the census would ensure that each state received fair and accurate representation in the U.S. House of Representatives.

    The 1790 Census recorded almost 4 million people. By comparison, the 2000 Census counted almost 300 million. That’s more than 70 times the number of people that lived in the United States 210 years ago! It is estimated that by 2050 there will be 392 million people living in the United States! The United States now is the third most populated country in the world after China and India.

    The Thinking Spatially Using GIS home is at: http://esriurl.com/TSG

    All Esri GeoInquiries can be found at: http://www.esri.com/geoinquiries

  16. Countries with the highest population growth rate 2024

    • statista.com
    • ai-chatbox.pro
    Updated Apr 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest population growth rate 2024 [Dataset]. https://www.statista.com/statistics/264687/countries-with-the-highest-population-growth-rate/
    Explore at:
    Dataset updated
    Apr 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.

  17. Total population of the DACH countries from 2000 to 2030

    • ai-chatbox.pro
    • statista.com
    Updated May 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of the DACH countries from 2000 to 2030 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F804551%2Ftotal-population-of-the-dach-countries%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Germany, Switzerland, Austria
    Description

    The DACH region refers to the Central European area of Germany (D), Austria (A), and Switzerland (CH). In 2024, these countries had a combined population of 102.84 million people. Germany is, by far, the largest of the three countries, with a population of more than 84.72 million; almost ten times larger than those of Austria or Switzerland. Growth rates However, population growth across the region has been relatively slow during the past two decades, with Germany's population growing by fewer than two million since 2000, which is an increase of just two percent. In contrast, Austria's population has grown by roughly 12 percent, while Switzerland's has increased by over 20 percent, but the overall change in the DACH region's population is less than five percent due to the disproportionate amount of people in Germany. Migration The reason for low population growth is due to the historically low birth rates in Germany. Since 1972, Germany's death rate has consistently exceeded its birth rate, giving an overall natural decline. Austria and Switzerland have also experienced similar trends in some years, but generally see a natural increase. Because of this, population growth is often dependent on migration. The most significant rise in the DACH area's population came in around 2015, during the Syrian migrant crisis. In Europe, Germany took in the largest number of Syrian refugees during this period, while Austria had one of the highest acceptance rates in proportion to its population. This is in addition to the relatively high number of refugees Germany and Austria accept from other countries, especially Afghanistan. Not all migrants are refugees, however, as the high living standards in all three countries attract large numbers of economic migrants from the rest of the world, especially Southern and Eastern Europe.

  18. d

    International Cigarette Consumption Database v1.3

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Poirier, Mathieu JP; Guindon, G Emmanuel; Sritharan, Lathika; Hoffman, Steven J (2023). International Cigarette Consumption Database v1.3 [Dataset]. http://doi.org/10.5683/SP2/AOVUW7
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Poirier, Mathieu JP; Guindon, G Emmanuel; Sritharan, Lathika; Hoffman, Steven J
    Time period covered
    Jan 1, 1970 - Jan 1, 2015
    Description

    This database contains tobacco consumption data from 1970-2015 collected through a systematic search coupled with consultation with country and subject-matter experts. Data quality appraisal was conducted by at least two research team members in duplicate, with greater weight given to official government sources. All data was standardized into units of cigarettes consumed and a detailed accounting of data quality and sourcing was prepared. Data was found for 82 of 214 countries for which searches for national cigarette consumption data were conducted, representing over 95% of global cigarette consumption and 85% of the world’s population. Cigarette consumption fell in most countries over the past three decades but trends in country specific consumption were highly variable. For example, China consumed 2.5 million metric tonnes (MMT) of cigarettes in 2013, more than Russia (0.36 MMT), the United States (0.28 MMT), Indonesia (0.28 MMT), Japan (0.20 MMT), and the next 35 highest consuming countries combined. The US and Japan achieved reductions of more than 0.1 MMT from a decade earlier, whereas Russian consumption plateaued, and Chinese and Indonesian consumption increased by 0.75 MMT and 0.1 MMT, respectively. These data generally concord with modelled country level data from the Institute for Health Metrics and Evaluation and have the additional advantage of not smoothing year-over-year discontinuities that are necessary for robust quasi-experimental impact evaluations. Before this study, publicly available data on cigarette consumption have been limited—either inappropriate for quasi-experimental impact evaluations (modelled data), held privately by companies (proprietary data), or widely dispersed across many national statistical agencies and research organisations (disaggregated data). This new dataset confirms that cigarette consumption has decreased in most countries over the past three decades, but that secular country specific consumption trends are highly variable. The findings underscore the need for more robust processes in data reporting, ideally built into international legal instruments or other mandated processes. To monitor the impact of the WHO Framework Convention on Tobacco Control and other tobacco control interventions, data on national tobacco production, trade, and sales should be routinely collected and openly reported. The first use of this database for a quasi-experimental impact evaluation of the WHO Framework Convention on Tobacco Control is: Hoffman SJ, Poirier MJP, Katwyk SRV, Baral P, Sritharan L. Impact of the WHO Framework Convention on Tobacco Control on global cigarette consumption: quasi-experimental evaluations using interrupted time series analysis and in-sample forecast event modelling. BMJ. 2019 Jun 19;365:l2287. doi: https://doi.org/10.1136/bmj.l2287 Another use of this database was to systematically code and classify longitudinal cigarette consumption trajectories in European countries since 1970 in: Poirier MJ, Lin G, Watson LK, Hoffman SJ. Classifying European cigarette consumption trajectories from 1970 to 2015. Tobacco Control. 2022 Jan. DOI: 10.1136/tobaccocontrol-2021-056627. Statement of Contributions: Conceived the study: GEG, SJH Identified multi-country datasets: GEG, MP Extracted data from multi-country datasets: MP Quality assessment of data: MP, GEG Selection of data for final analysis: MP, GEG Data cleaning and management: MP, GL Internet searches: MP (English, French, Spanish, Portuguese), GEG (English, French), MYS (Chinese), SKA (Persian), SFK (Arabic); AG, EG, BL, MM, YM, NN, EN, HR, KV, CW, and JW (English), GL (English) Identification of key informants: GEG, GP Project Management: LS, JM, MP, SJH, GEG Contacts with Statistical Agencies: MP, GEG, MYS, SKA, SFK, GP, BL, MM, YM, NN, HR, KV, JW, GL Contacts with key informants: GEG, MP, GP, MYS, GP Funding: GEG, SJH SJH: Hoffman, SJ; JM: Mammone J; SRVK: Rogers Van Katwyk, S; LS: Sritharan, L; MT: Tran, M; SAK: Al-Khateeb, S; AG: Grjibovski, A.; EG: Gunn, E; SKA: Kamali-Anaraki, S; BL: Li, B; MM: Mahendren, M; YM: Mansoor, Y; NN: Natt, N; EN: Nwokoro, E; HR: Randhawa, H; MYS: Yunju Song, M; KV: Vercammen, K; CW: Wang, C; JW: Woo, J; MJPP: Poirier, MJP; GEG: Guindon, EG; GP: Paraje, G; GL Gigi Lin Key informants who provided data: Corne van Walbeek (South Africa, Jamaica) Frank Chaloupka (US) Ayda Yurekli (Turkey) Dardo Curti (Uruguay) Bungon Ritthiphakdee (Thailand) Jakub Lobaszewski (Poland) Guillermo Paraje (Chile, Argentina) Key informants who provided useful insights: Carlos Manuel Guerrero López (Mexico) Muhammad Jami Husain (Bangladesh) Nigar Nargis (Bangladesh) Rijo M John (India) Evan Blecher (Nigeria, Indonesia, Philippines, South Africa) Yagya Karki (Nepal) Anne CK Quah (Malaysia) Nery Suarez Lugo (Cuba) Agencies providing assistance: Irani... Visit https://dataone.org/datasets/sha256%3Aaa1b4aae69c3399c96bfbf946da54abd8f7642332d12ccd150c42ad400e9699b for complete metadata about this dataset.

  19. a

    WRI - Environmental Democracy Index and Population

    • globil-panda.opendata.arcgis.com
    • prod.testopendata.com
    • +1more
    Updated Apr 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2018). WRI - Environmental Democracy Index and Population [Dataset]. https://globil-panda.opendata.arcgis.com/datasets/arcgis-content::wri-environmental-democracy-index-and-population
    Explore at:
    Dataset updated
    Apr 19, 2018
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer shows the overall 2016 Environmental Democracy Index for 70 countries around the world. The map also shows the total population of each country for reference.The Environmental Democracy Index is an average of three overall pillars: transparency, participation, and justice. These pillars are made up of 23 guidelines adopted by the United Nations Environment Programme (UNEP), which are arithmetic averages of 75 legal indicators. As described on the Background and Methodology page, the Environmental Democracy Index rides on the following:"Environmental democracy is rooted in the idea that meaningful public participation is critical to ensure that land and natural resource decisions adequately and equitably address citizens’ interests. At its core, environmental democracy involves three mutually reinforcing rights:the right to freely access information on environmental quality and problemsthe right to participate meaningfully in decision-makingthe right to seek enforcement of environmental laws or compensation for harm.Protecting these rights, especially for the most marginalized and vulnerable, is the first step to promoting equity and fairness in sustainable development. Without essential rights, information exchange between governments and the public is stifled and decisions that harm communities and the environment cannot be challenged or remedied. Establishing a strong legal foundation is the starting point for recognizing, protecting and enforcing environmental democracy. "The population estimate comes from the Esri 2016 World Population Estimate.

  20. f

    20 Richest Counties in Florida

    • florida-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). 20 Richest Counties in Florida [Dataset]. https://www.florida-demographics.com/counties_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions

    Area covered
    Florida
    Description

    A dataset listing Florida counties by population for 2024.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
Organization logo

Countries with the largest population 2025

Explore at:
36 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 21, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
World
Description

In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth

Search
Clear search
Close search
Google apps
Main menu