This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study explores the relationship between grandparental co-residence and net fertility – measured as the number of children under five – in Mexico across three key phases of its demographic transition: 1930 (pre-transitional), 1970 (population growth), and 2015 (fertility decline). Using census microdata and Poisson and multinomial regression models, we assess how intergenerational household structures interact with family socioeconomic status and cultural context to influence fertility outcomes. A central innovation is the use of a reconstructed 10% sample of the 1930 census, complemented by an imputation strategy to infer kinship ties not recorded in the original data. This enabled one of the earliest large-scale analyses of family co-residence and reproduction in historical Mexico. Findings reveal that the effects of grandparental co-residence vary by context. In 1930, cohabitation with grandmothers – especially in rural indigenous households – was associated with lower fertility, while cohabitation with grandfathers in non-indigenous rural areas corresponded to higher fertility. In 1970, amid pronatalist policies and economic growth, these effects weakened overall but persisted modestly in rural contexts. By 2015, co-residence – particularly with both grandparents – was associated with higher fertility and lower variability in fertility (CV), suggesting a stabilizing role in reproductive behavior. In contrast, households without grandparents exhibited lower fertility and greater heterogeneity, appearing to lead the shift toward reduced fertility. These findings illustrate how extended family structures both reflect and shape reproductive adaptation across shifting demographic contexts. By integrating evolutionary concepts such as cooperative breeding and social learning biases, the study offers insight into how kin networks can either support or constrain fertility depending on historical, socioeconomic, and cultural conditions. In doing so, it also contributes methodologically by addressing the complexity of nested and interactive effects – an essential step for understanding fertility dynamics in culturally diverse populations undergoing demographic transformation.
Throughout most of human history, global population growth was very low; between 10,000BCE and 1700CE, the average annual increase was just 0.04 percent. Therefore, it took several thousand years for the global population to reach one billion people, doing so in 1803. However, this period marked the beginning of a global phenomenon known as the demographic transition, from which point population growth skyrocketed. With the introduction of modern medicines (especially vaccination), as well as improvements in water sanitation, food supply, and infrastructure, child mortality fell drastically and life expectancy increased, causing the population to grow. This process is linked to economic and technological development, and did not take place concurrently across the globe; it mostly began in Europe and other industrialized regions in the 19thcentury, before spreading across Asia and Latin America in the 20th century. As the most populous societies in the world are found in Asia, the demographic transition in this region coincided with the fastest period of global population growth. Today, Sub-Saharan Africa is the region at the earliest stage of this transition. As population growth slows across the other continents, with the populations of the Americas, Asia, and Europe expected to be in decline by the 2070s, Africa's population is expected to grow by three billion people by the end of the 21st century.
In 2025, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth.
The Thai Demographic and Health Survey (TDHS) was a nationally representative sample survey conducted from March through June 1988 to collect data on fertility, family planning, and child and maternal health. A total of 9,045 households and 6,775 ever-married women aged 15 to 49 were interviewed. Thai Demographic and Health Survey (TDHS) is carried out by the Institute of Population Studies (IPS) of Chulalongkorn University with the financial support from USAID through the Institute for Resource Development (IRD) at Westinghouse. The Institute of Population Studies was responsible for the overall implementation of the survey including sample design, preparation of field work, data collection and processing, and analysis of data. IPS has made available its personnel and office facilities to the project throughout the project duration. It serves as the headquarters for the survey.
The Thai Demographic and Health Survey (TDHS) was undertaken for the main purpose of providing data concerning fertility, family planning and maternal and child health to program managers and policy makers to facilitate their evaluation and planning of programs, and to population and health researchers to assist in their efforts to document and analyze the demographic and health situation. It is intended to provide information both on topics for which comparable data is not available from previous nationally representative surveys as well as to update trends with respect to a number of indicators available from previous surveys, in particular the Longitudinal Study of Social Economic and Demographic Change in 1969-73, the Survey of Fertility in Thailand in 1975, the National Survey of Family Planning Practices, Fertility and Mortality in 1979, and the three Contraceptive Prevalence Surveys in 1978/79, 1981 and 1984.
National
The population covered by the 1987 THADHS is defined as the universe of all women Ever-married women in the reproductive ages (i.e., women 15-49). This covered women in private households on the basis of a de facto coverage definition. Visitors and usual residents who were in the household the night before the first visit or before any subsequent visit during the few days the interviewing team was in the area were eligible. Excluded were the small number of married women aged under 15 and women not present in private households.
Sample survey data
SAMPLE SIZE AND ALLOCATION
The objective of the survey was to provide reliable estimates for major domains of the country. This consisted of two overlapping sets of reporting domains: (a) Five regions of the country namely Bangkok, north, northeast, central region (excluding Bangkok), and south; (b) Bangkok versus all provincial urban and all rural areas of the country. These requirements could be met by defining six non-overlapping sampling domains (Bangkok, provincial urban, and rural areas of each of the remaining 4 regions), and allocating approximately equal sample sizes to them. On the basis of past experience, available budget and overall reporting requirement, the target sample size was fixed at 7,000 interviews of ever-married women aged 15-49, expected to be found in around 9,000 households. Table A.I shows the actual number of households as well as eligible women selected and interviewed, by sampling domain (see Table i.I for reporting domains).
THE FRAME AND SAMPLE SELECTION
The frame for selecting the sample for urban areas, was provided by the National Statistical Office of Thailand and by the Ministry of the Interior for rural areas. It consisted of information on population size of various levels of administrative and census units, down to blocks in urban areas and villages in rural areas. The frame also included adequate maps and descriptions to identify these units. The extent to which the data were up-to-date as well as the quality of the data varied somewhat in different parts of the frame. Basically, the multi-stage stratified sampling design involved the following procedure. A specified number of sample areas were selected systematically from geographically/administratively ordered lists with probabilities proportional to the best available measure of size (PPS). Within selected areas (blocks or villages) new lists of households were prepared and systematic samples of households were selected. In principle, the sampling interval for the selection of households from lists was determined so as to yield a self weighting sample of households within each domain. However, in the absence of good measures of population size for all areas, these sampling intervals often required adjustments in the interest of controlling the size of the resulting sample. Variations in selection probabilities introduced due to such adjustment, where required, were compensated for by appropriate weighting of sample cases at the tabulation stage.
SAMPLE OUTCOME
The final sample of households was selected from lists prepared in the sample areas. The time interval between household listing and enumeration was generally very short, except to some extent in Bangkok where the listing itself took more time. In principle, the units of listing were the same as the ultimate units of sampling, namely households. However in a small proportion of cases, the former differed from the latter in several respects, identified at the stage of final enumeration: a) Some units listed actually contained more than one household each b) Some units were "blanks", that is, were demolished or not found to contain any eligible households at the time of enumeration. c) Some units were doubtful cases in as much as the household was reported as "not found" by the interviewer, but may in fact have existed.
Face-to-face
The DHS core questionnaires (Household, Eligible Women Respondent, and Community) were translated into Thai. A number of modifications were made largely to adapt them for use with an ever- married woman sample and to add a number of questions in areas that are of special interest to the Thai investigators but which were not covered in the standard core. Examples of such modifications included adding marital status and educational attainment to the household schedule, elaboration on questions in the individual questionnaire on educational attainment to take account of changes in the educational system during recent years, elaboration on questions on postnuptial residence, and adaptation of the questionnaire to take into account that only ever-married women are being interviewed rather than all women. More generally, attention was given to the wording of questions in Thai to ensure that the intent of the original English-language version was preserved.
a) Household questionnaire
The household questionnaire was used to list every member of the household who usually lives in the household and as well as visitors who slept in the household the night before the interviewer's visit. Information contained in the household questionnaire are age, sex, marital status, and education for each member (the last two items were asked only to members aged 13 and over). The head of the household or the spouse of the head of the household was the preferred respondent for the household questionnaire. However, if neither was available for interview, any adult member of the household was accepted as the respondent. Information from the household questionnaire was used to identify eligible women for the individual interview. To be eligible, a respondent had to be an ever-married woman aged 15-49 years old who had slept in the household 'the previous night'.
Prior evidence has indicated that when asked about current age, Thais are as likely to report age at next birthday as age at last birthday (the usual demographic definition of age). Since the birth date of each household number was not asked in the household questionnaire, it was not possible to calculate age at last birthday from the birthdate. Therefore a special procedure was followed to ensure that eligible women just under the higher boundary for eligible ages (i.e. 49 years old) were not mistakenly excluded from the eligible woman sample because of an overstated age. Ever-married women whose reported age was between 50-52 years old and who slept in the household the night before birthdate of the woman, it was discovered that these women (or any others being interviewed) were not actually within the eligible age range of 15-49, the interview was terminated and the case disqualified. This attempt recovered 69 eligible women who otherwise would have been missed because their reported age was over 50 years old or over.
b) Individual questionnaire
The questionnaire administered to eligible women was based on the DHS Model A Questionnaire for high contraceptive prevalence countries. The individual questionnaire has 8 sections: - Respondent's background - Reproduction - Contraception - Health and breastfeeding - Marriage - Fertility preference - Husband's background and woman's work - Heights and weights of children and mothers
The questionnaire was modified to suit the Thai context. As noted above, several questions were added to the standard DHS core questionnaire not only to meet the interest of IPS researchers hut also because of their relevance to the current demographic situation in Thailand. The supplemental questions are marked with an asterisk in the individual questionnaire. Questions concerning the following items were added in the individual questionnaire: - Did the respondent ever
Large-scale fluctuations in abundance are a common feature of small mammal populations and have been the subject of extensive research. These demographic fluctuations are often associated with concurrent changes in the average body mass of individuals, sometimes referred to as the ‘Chitty effect’. Despite the long-standing recognition of this phenomenon, an empirical investigation of the underlying coupled dynamics of body mass and population growth has been lacking. Using long-term life-history data combined with a trait-based demographic approach, we examined the relationship between body mass and demography in a small mammal population that exhibits non-cyclic, large-scale fluctuations in abundance. We used data from the male segment of a 25-year study of the monogamous prairie vole, Microtus ochrogaster, in Illinois, USA. Specifically, we investigated how trait–demography relationships and trait distributions changed between different phases of population fluctuations, and the consequences of these changes for both trait and population dynamics. We observed phase-specific changes in male adult body mass distribution in this population of prairie voles. Our analyses revealed that these changes were driven by variation in ontogenetic growth, rather than selection acting on the trait. The resulting changes in body mass influenced most life-history processes, and these effects varied among phases of population fluctuation. However, these changes did not propagate to affect the population growth rate due to the small effect of body mass on vital rates, compared to the overall differences in vital rates between phases. The increase phase of the fluctuations was initiated by enhanced survival, particularly of juveniles and fecundity, whereas the decline phase was driven by an overall reduction in fecundity, survival and maturation rates. Our study provides empirical support, as well as a potential mechanism, underlying the observed trait changes accompanying population fluctuations. Body size dynamics and population fluctuations resulted from different life-history processes. Therefore, we conclude that body size dynamics in our population do not drive the observed population dynamics. This more in-depth understanding of different components of small mammal population fluctuations will help us to better identify the mechanistic drivers of this interesting phenomenon.
The SWEDD is a regional project aiming to accelerate the demographic transition by addressing both supply- and demand-side constraints to family planning and reproductive and sexual health. To achieve its objective, the project targets adolescent girls and young women mainly between the ages of 8 and 24, who are vulnerable to early marriage, teenage pregnancy, and early school drop-out. The project targeted 9 countries of the Sahel and Western Africa (Benin, Burkina Faso, Cameroon, Chad, Côte d’Ivoire, Guinea, Mali, Mauritania, and Niger) and is expanding in other African countries. The SWEDD is structured into three main components: component 1 seeks to generate demand for reproductive, maternal, neonatal, child health and nutrition products and services; component 2 seeks to improve supply of these products and qualified personnel; and component 3 seeks to strengthen national capacity and policy dialogue.
The World Bank Africa Gender Innovation Lab and its partners are conducting rigorous impact evaluations of key interventions under component 1 to assess their effects on child marriage, fertility, and adolescent girls and young women’s empowerment. The interventions were a set of activities targeting adolescent girls and their communities, designed in collaboration with the government of Mauritania. These were (i) safe spaces to empower girls through the provision of life skills and SRH education; (ii) Cash transfer to cover girls’ expenses (transportation cost, food…); (iii) support to income-generating activities (IGA) with the provision of grants and entrepreneurship training and finally (iv) community sensitization by religious and village leaders. The latter two have the objective to change restrictive social norms and create an enabling environment for girls’ empowerment.
These data represent the first round of data collection (baseline) for the impact evaluation. The sample comprises 5,324 households and girls living in the regions of Assaba, Guidimagha, Hodh Charghy et Hodh Gharby.
The information gathered from the survey may aid decision makers in the formulation of economic and social policies to: - reduce fertility and child marriage by improving access to contraceptive methods and improving reproductive health knowledge. - foster women’s empowerment through enhancing their access to economic activities.
The survey can be an important source of information for planners to know how to improve the quality of people's living standards, in particular women’s living conditions. The Ministry of Social Affairs, Children and Families and the Ministry of National Education of Mauritania would benefit from the data of this survey, together with other public organizations working on girls and women empowerment and reproductive health. District Authorities, Research Institutions, Non-Governmental Organizations and the general public will also benefit from the survey data.
Four regions of Mauritania : Assaba, Guidimagha, Hodh Charghy et Hodh Gharby.
Households, individuals
Sample survey data [ssd]
The study was conducted in 74 localities and 55 secondary schools in the regions of de Assaba, Guidimagha, Hodh Charghy et Hodh Gharby. The sampling procedure involves several steps to ensure comprehensive coverage of the target populations. For the Ministry of National Education (MEN), 55 eligible secondary schools located in the chief towns of communes have been identified. The census is conducted in these chief towns and surrounding localities where students reside. In localities with fewer than 400 households, the entire locality is surveyed. In larger localities, the survey is conducted in the enumeration zones containing the schools and one or two adjacent zones. For the Ministry of Social Affairs, Childhood and Family (MASEF), the program targets chief towns of communes not part of the "Tekavoul" program and excludes chief towns of Mougataa and Wilaya. In chief towns with fewer than 400 households, the entire town is surveyed, while in larger towns, the two enumeration zones with the highest number of women are surveyed. The MASEF safe spaces target women aged 15 to 29 who are out of school or never attended school, from households with the lowest socio-economic scores based on durable goods, access to basic infrastructure, and housing characteristics. Similarly, the MEN safe spaces target school-going girls from households with the lowest scores. The scholarship program involves individual randomization of girls sampled for MEN safe spaces, forming two groups: one receiving scholarships (1084 girls) and the other not receiving scholarships (1080 girls). This systematic approach ensures a thorough evaluation of the project's impact across different regions and target populations.
The objective of the baseline survey was to build a comprehensive dataset, which would serve as a reference point for the entire sample, before treatment and control assignment and program implementation.
Computer Assisted Personal Interview [capi]
The data consists of responses from households to questions pertaining to: 1. List of household members 2. Education and employment of household members 3. Characteristics of housing and durable goods 4. Chocs and food security 5. Household head's aspirations for their children 6. Attitudes on women's empowerment and gender equality
The questionnaire administrated to girls contains the following sections: 1. Education 2. Marriage and children 3. Aspirations 4. Reproductive health and family planning 5. Psycho-social 6. Women's empowerment 7. Gender-based violence 8. Income-generating activities 9. Savings and credits 10. Personal relationships and social networks 11. Migration
The household questionnaire was administered to the head of the household or to an authorized person capable of answering questions about all individuals in the household. The adolescent questionnaire was administered to an eligible pre-selected girl within the household. Considering the modules of the adolescent questionnaire, it was only administered by female enumerators. The questionnaires were written in French and programmed on tablets in French using the CAPI program.
In 2025, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have between 5-6 children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan and Yemen are the only countries not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost six children per woman, Chad is the country with the highest fertility rate in the world. Population growth in Chad is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Chad's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are creating severe econoic and societal challenges as workforces are shrinking while aging populations are placin a greater burden on both public and personal resources.
In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Central Balkans region is of great importance for understanding the spread of the Neolithic in Europe but the Early Neolithic population dynamics of the region is unknown. In this study we apply the method of summed calibrated probability distributions to a set of published radiocarbon dates from the Republic of Serbia in order to reconstruct population dynamics in the Early Neolithic in this part of the Central Balkans. The results indicate that there was a significant population growth after ~6200 calBC, when the Neolithic was introduced into the region, followed by a bust at the end of the Early Neolithic phase (~5400 calBC). These results are broadly consistent with the predictions of the Neolithic Demographic Transition theory and the patterns of population booms and busts detected in other regions of Europe. These results suggest that the cultural process that underlies the patterns observed in Central and Western Europe was also in operation in the Central Balkan Neolithic and that the population increase component of this process can be considered as an important factor for the spread of the Neolithic as envisioned in the demic diffusion hypothesis.
In outbred sexually reproducing populations, age-specific mortality rates reach a plateau in late life following the exponential increase in mortality rates that marks aging. Little is known about what happens to physiology when cohorts transition from aging to late life. We measured age-specific values for starvation resistance, desiccation resistance, time-in-motion and geotaxis in ten Drosophila melanogaster populations: five populations selected for rapid development and five control populations. Adulthood was divided into two stages, the aging phase and the late-life phase according to demographic data. Consistent with previous studies, we found that populations selected for rapid development entered the late-life phase at an earlier age than the controls. Age-specific rates of change for all physiological phenotypes showed differences between the aging phase and the late-life phase. This result suggests that late life is physiologically distinct from aging. The ages of transitions...
https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms
The lack of a recent summarizing description of population density in Germany that contains detailed information of pre-industrial times motivated the author of this study to undertake an analysis of population history of Northern Germany between 1740 and 1840. The goal of the study is to analyze the development of population regarding different aspects of population history and historical demographics. The author tries to connect geographic data with family data and then he relates it with economic, political and cultural development. The main part of the study ‘population dynamics’ gives an overview over demographic developments in a century characterized by demographic changes. Insights in the general changes in population size, the phases of Northern German population development and in relevant components for increases in population (e.g. decrease in mortality) are given. Finally the population determinants are developed, first in a concrete regional historic context of some areas (Marsch, nordwestliches Binnenland, Münsterland, Ostwestfalen, Ostelbien) and then more general external factors are included in the analysis. The generative structure of pre-industrial population, the industrial development, seasonal work and colonization are covered. There is an extra chapter on the development of urban population which includes the factors: urbanization, decrease in mortality, first signs of birth controls and migration. These regional considerations are opposed to an investigation of the general framework of demographical changes. In this context also grain prices and prevention from smallpox are taken into account.
Systematic of the data:
Sub-regions:
1. Holstein
2. The Hanseatic cities
3. Mecklenburg and Wester Pomerania
4. Prussia’s middle provinces
5. Core area of Lower Saxony
6. Weser-Ems-Area
7. Westphalia
Topics:
1. Births (excl. still births)
2. Deaths (incl. still births)
3. Still births
4. Marriages
5. Illegitimate births
6. Infant and child mortality
7. Population status
Mortality tables: A. Holstein (Propsteien) 1775/98, 1801/05 B. East Friesland 1775/98, 1835/39 C. County of Mark und märkische Kreise 1775/98, 1820/34 D. Kurmark 1775/98, 1835/39
Register of data tables:
- Probability of death decennially in the German Reich 1881/90
- Handed down census results from Braunschweig-Lüneburg
- Advances is historical tables of Westphalia
- Migration balances of Prussian government districts 1816-1840
- Population and households in Hamburg 1764-1824
- Population in Northern Germany and Germany
- Approximated values for net migration 1751-1840
- Age specific decline in mortality 1775/98-1835/39
- Decline in child mortality
- Fertility and marriage behavior by family reconstruction
- Proportion of singles by department s and arrodissements 1811
- Average age at birth ca. 1740-ca.1840
- Regression analysis on deaths (excl. children) – marriages
- Regional differences in population increases
- Population density and mortality 1780-1799
- Population balances of Marschgebiete und der Fehmarn Island
- Population balances of North Western Germany (without Küstenmarsch)
- Budget structures of the parish Vreden 1749
- Population balances of areas with high industry densities
- Budget structures of County of Mark 1798
- Budget structures in Minden-Ravensburg and Tecklenburg 1798
- Natality, mortality and cottage industry in Ravensberg 1788-1798
- North Western German areas with low birth rates
- Colonists resident in Prussia 1740-1786
- Social structure of rural population 1750 – 1790/98
- Social structure of rural population in Halberstädter
- Urban population (legal definition of city)
- Mortality due to tuberculosis in rural and urban areas
- Average mortality rates in large cities
- Infant mortality and decline in mortality in Berlin S
- Rural and urban migration balances 1741/1778-1840
- Birth rates
- Cumulative elasticity of population movement
- Average marriage rates in Hannover in comparison
- Mortality due to smallpox
- Share of infant and child mortality due to smallpox
-Magnitude of the decrease in child mortality
- Reduction of infant mortality
- Regional differences in the decline in infant mortality
The data can be requested via order form or by personal request via email or telephone. PDF-form and contact data: http://www.gesis.org/dienstleistungen/daten/daten-historische-sozialf/querschnittsdaten/
There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
How does the association between gender attitudes and housework share vary across countries and time? We examine the second demographic transition as it unmasks in the association between gender attitudes and housework participation. Using data of the 2002 and 2012 International Social Survey Programme (ISSP) for 24 countries, we find that the association between gender attitudes and housework share became stronger over time in most countries, signifying that the Second Demographic Transition was in place. The results also show that the association varied across the 24 countries, reaching an equilibrium in many but at different stages. Our findings suggest that equilibria in the domestic division of labour take various forms and paces in the ISSP countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Economic growth and modernization of society are generally associated with fertility rate decreases but which forces trigger this is unclear. In this paper we assess how fertility changes with increased labor market participation of women in rural Senegal. Evidence from high-income countries suggests that higher female employment rates lead to reduced fertility rates but evidence from developing countries at an early stage of demographic transition is largely absent. We concentrate on a rural area in northern Senegal where a recent boom in horticultural exports has been associated with a sudden increase in female off-farm employment. Using survey data we show that employed women have a significantly higher age at marriage and at first childbirth, and significantly fewer children. As causal identification strategy we use instrumental variable and difference-in-differences estimations, combined with propensity score matching. We find that female employment reduces the number of children per woman by 25%, and that this fertility-reducing effect is as large for poor as for non-poor women and larger for illiterate than for literate women. Results imply that female employment is a strong instrument for empowering rural women, reducing fertility rates and accelerating the demographic transition in poor countries. The effectiveness of family planning programs can increase if targeted to areas where female employment is increasing or to female employees directly because of a higher likelihood to reach women with low-fertility preferences. Our results show that changes in fertility preferences not necessarily result from a cultural evolution but can also be driven by sudden and individual changes in economic opportunities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionDemographic changes as a result of evacuation in the acute phase of the 2011 Fukushima nuclear disaster are not well evaluated. We estimated post-disaster demographic transitions in Minamisoma City—located 14–38 km north of the nuclear plant—in the first month of the disaster; and identified demographic factors associated with the population remaining in the affected areas.Materials and methodsWe extracted data from the evacuation behavior survey administered to participants in the city between July 11, 2011 and April 30, 2013. Using mathematical models, we estimated the total population in the city after the disaster according to sex, age group, and administrative divisions of the city. To investigate factors associated with the population remaining in place after the disaster, a probit regression model was employed, taking into account sex, age, pre-disaster dwelling area, and household composition.ResultsThe overall population decline in Minamisoma City peaked 11 days after the disaster, when the population reached 7,107 people—11% of the pre-disaster level. The remaining population levels differed by area: 1.1% for mandatory evacuation zone, 12.5% for indoor sheltering zone, and 12.6% for other areas of the city. Based on multiple regression analyses, higher odds for remaining in place were observed among men (odds ratio 1.72 [95% confidence intervals 1.64–1.85]) than women; among people aged 40–64 years (1.40 [1.24–1.58]) than those aged 75 years or older; and among those living with the elderly, aged 70 years or older (1.18 [1.09–1.27]) or those living alone (1.71 [1.50–1.94]) than among those who were not.DiscussionDespite the evacuation order, some residents of mandatory evacuation zones remained in place, signaling the need for preparation to respond to their post-disaster needs. Indoor sheltering instructions may have accelerated voluntary evacuation, and this demonstrates the need for preventing potentially disorganized evacuation in future nuclear events.
While the BRICS countries are grouped together in terms of economic development, demographic progress varies across these five countries. In 2019, India and South Africa were the only BRICS countries with a fertility rate above replacement level (2.1 births per woman). Fertility rates since 2000 show that fertility in China and Russia has either fluctuated or remained fairly steady, as these two countries are at a later stage of the demographic transition than the other three, while Brazil has reached this stage more recently. Fertility rates in India are following a similar trend to Brazil, while South Africa's rate is progressing at a much slower pace. Demographic development is inextricably linked with economic growth; for example, as fertility rates drop, female participation in the workforce increases, as does the average age, which then leads to higher productivity and a more profitable domestic market.
dataDroso - census dataDemographic transitions of Drosophyllum lusitanicum populations recorded in annual censuses (from 2011 to 2015) in five populations. These data are used to quantify vital rates of above-ground individuals.dataDroso.csvdataDrosoSB - seed bankSeed fates (in a binary format) inferred from two experiments. These data are used to quantify the transitions related to the seed bank and associated parameter uncertainties.dataDrosoSB.csvBayModel - Bayesian vital rate GLMMsExecutes and saves the results of a Bayesian model quantifying all vital rates; illustrates basic diagnostics that can be run on the results of an MCMC run (i.e., the posterior parameter distribution) to check for model convergence and autocorrelation of the posterior samples.BayModel.RmcmcOUT - parameter samplesIn case the reader wishes to forego the step of fitting the Bayesian models, we provided a mcmcOUT.csv file with 1000 posterior parameter values for each of the parameters estimated with Bayesian m...
Conserving species requires knowledge of demographic rates (survival, recruitment) that govern population dynamics to allow the allocation of limited resources to the most vulnerable stages of target species' life cycles. Additionally, quantifying drivers of demographic change facilitates the enactment of specific remediation strategies. However, knowledge gaps persist in how similar environmental changes lead to contrasting population dynamics through demographic rates. For sympatric hummingbird species, the population of urban-associated partial-migrant Anna's hummigbird (Calypte anna) has increased, yet the populations of Neotropical migrants including rufous, calliope, and black-chinned hummingbirds have decreased. Here, we developed an integrated population model to jointly analyze 25 years of mark-recapture data and population survey data for these four species. We examined the contributions of demographic rates on population growth and evaluated the effects of anthropogenic stres..., This R data file contains a named list for each species in our study. It has been processed to remove covariates and data that are not public domain but are available for download at the links provided (indicated with * in the readme file). Each species list contains mark-recapture records (y), the known-state records (z), number of years spanned by the analysis (n.years), numbers banded individuals (n.ind), banding station membership (sta), number of banding stations (n.sta), year of first encounter for each individual (first), year of last possible encounter of each individual if it were to be alive (last), first and last years of mark recapture data (first_yr / last_yr), sex (1 = male, 2 = female) and age (1 = juvenile, 2 = adult) membership for each individual, the observed residency information for each individual in each year (r), the partially observed residency state information for each individual (u), the standardized human population density and crop data in the 3 kilometers ..., Data can be opened in R and analyzed using Nimble., ## Hummingbird IPM data file
This data file contains a list of lists named for each of the four species in our analysis: Anna's (ANHU; Calypte anna), black-chinned (BCHU; Archilochus alexandri), calliope (CAHU; Selasphorus calliope), and rufous hummingbirds (RUHU; Selasphorus rufus). Each of these lists contains the required mark-recapture inputs for integrated population modelling in R/Nimble. Raw covariates of human population density, land cover classification, as well as Breeding Bird Survey data can be accessed as described under Sharing/Access information. To load the file in R from the current working directory:
load("./IPM.shared.Rdata")
Within each named list, there are data for mark-recapture records (NA = station not active, 0 = not captured, 1 = captured; y), the known state, either alive (1) or unknown (NA) , of each individual in each year (z), number of years spanned by the analysis (n.years), nu...
Brazil and the United States are the two most populous countries in the Americas today. In 1500, the year that Pedro Álvares Cabral made landfall in present-day Brazil and claimed it for the Portuguese crown, it is estimated that there were roughly one million people living in the region. Some estimates for the present-day United States give a population of two million in the year 1500, although estimates vary greatly. By 1820, the population of the U.S. was still roughly double that of Brazil, but rapid growth in the 19th century would see it grow 4.5 times larger by 1890, before the difference shrunk during the 20th century. In 2024, the U.S. has a population over 340 million people, making it the third most populous country in the world, while Brazil has a population of almost 218 million and is the sixth most populous. Looking to the future, population growth is expected to be lower in Brazil than in the U.S. in the coming decades, as Brazil's fertility rates are already lower, and migration rates into the United States will be much higher. Historical development The indigenous peoples of present-day Brazil and the U.S. were highly susceptible to diseases brought from the Old World; combined with mass displacement and violence, their population growth rates were generally low, therefore migration from Europe and the import of enslaved Africans drove population growth in both regions. In absolute numbers, more Europeans migrated to North America than Brazil, whereas more slaves were transported to Brazil than the U.S., but European migration to Brazil increased significantly in the early 1900s. The U.S. also underwent its demographic transition much earlier than in Brazil, therefore its peak period of population growth was almost a century earlier than Brazil. Impact of ethnicity The demographics of these countries are often compared, not only because of their size, location, and historical development, but also due to the role played by ethnicity. In the mid-1800s, these countries had the largest slave societies in the world, but a major difference between the two was the attitude towards interracial procreation. In Brazil, relationships between people of different ethnic groups were more common and less stigmatized than in the U.S., where anti-miscegenation laws prohibited interracial relationships in many states until the 1960s. Racial classification was also more rigid in the U.S., and those of mixed ethnicity were usually classified by their non-white background. In contrast, as Brazil has a higher degree of mixing between those of ethnic African, American, and European heritage, classification is less obvious, and factors such as physical appearance or societal background were often used to determine racial standing. For most of the 20th century, Brazil's government promoted the idea that race was a non-issue and that Brazil was racially harmonious, but most now acknowledge that this actually ignored inequality and hindered progress. Racial inequality has been a prevalent problem in both countries since their founding, and today, whites generally fare better in terms of education, income, political representation, and even life expectancy. Despite this adversity, significant progress has been made in recent decades, as public awareness of inequality has increased, and authorities in both countries have made steps to tackle disparities in areas such as education, housing, and employment.
This dataset includes data on 25 transitions of a matrix demographic model of the invasive species Vincetoxicum nigrum (L.) Moench (black swallow-wort or black dog-strangling vine) and Vincetoxicum rossicum (Kleopow) Barb. (pale swallow-wort or dog-strangling vine) (Apocynaceae, subfamily Asclepiadoideae), two invasive perennial vines in the northeastern U.S.A. and southeastern Canada. The matrix model was developed for projecting population growth rates as a result of changes to lower-level vital rates from biological control although the model is generalizable to any control tactic. Transitions occurred among the five life stages of seeds, seedlings, vegetative juveniles (defined as being in at least their second season of growth), small flowering plants (having 1–2 stems), and large flowering plants (having 3 or more stems). Transition values were calculated using deterministic equations and data from 20 lower-level vital rates collected from 2009-2012 from two open field and two forest understory populations of V. rossicum (43°51’N, 76°17’W; 42°48'N, 76°40'W) and two open field populations of V. nigrum (41°46’N, 73°44’W; 41°18’N, 73°58’W) in New York State. Sites varied in plant densities, soil depth, and light levels (forest populations). Detailed descriptions of vital rate data collection may be found in: Milbrath et al. 2017. Northeastern Naturalist 24(1):37-53. Five replicate sets of transition data obtained from five separate spatial regions of a particular infestation were produced for each of the six populations. Note: Added new excel file of vital rate data on 12/7/2018. Resources in this dataset:Resource Title: Matrix model transition data for Vincetoxicum species. File Name: Matrix_model_transition_data.csvResource Description: This data set includes data on 25 transitions of a matrix demographic model of two invasive Vincetoxicum species from six field and forest populations in New York State.Resource Title: Variable definitions. File Name: Matrix_model_metadata.csvResource Description: Definitions of variables including equations for each transition and definitions of the lower-level vital rates in the equationsResource Title: Vital Rate definitions. File Name: Vital_Rate.csvResource Description: Vital Rate definitions of lower-level vital rates used in transition equations - to be substituted into the Data Dictionary for full definition of each transition equation.Resource Title: Data Dictionary. File Name: Matrix_Model_transition_data_DD.csvResource Description: See Vital Rate resource for definitions of lower-level vital rates used in transition equations where noted.Resource Title: Matrix model vital rate data for Vincetoxicum species. File Name: Matrix_model_vital rate_data.csvResource Description: This data set includes data on 20 lower-level vital rates used in the calculation of transitions of a matrix demographic model of two invasive Vincetoxicum species in New York State as well as definitions of the vital rates. (File added on 12/7/2018)Resource Software Recommended: Microsoft Excel,url: https://office.microsoft.com/excel/