100+ datasets found
  1. ACS 5-Year Data Profiles

    • catalog.data.gov
    • datasets.ai
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). ACS 5-Year Data Profiles [Dataset]. https://catalog.data.gov/dataset/acs-5-year-data-profiles-01617
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The American Community Survey (ACS) is an ongoing survey that provides data every year -- giving communities the current information they need to plan investments and services. The ACS covers a broad range of topics about social, economic, housing, and demographic characteristics of the U.S. population. The ACS 5-year data profiles include the following geographies: nation, all states (including DC and Puerto Rico), all metropolitan areas, all congressional districts, all counties, all places and all tracts. The Data profiles contain broad social, economic, housing, and demographic information. The data are presented as both counts and percentages. There are over 2,400 variables in this dataset.

  2. d

    ACS 5 Year Data by Community Area

    • catalog.data.gov
    Updated Feb 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2025). ACS 5 Year Data by Community Area [Dataset]. https://catalog.data.gov/dataset/acs-5-year-data-by-community-area
    Explore at:
    Dataset updated
    Feb 7, 2025
    Dataset provided by
    data.cityofchicago.org
    Description

    Selected variables from the most recent ACS Community Survey (Released 2023) aggregated by Community Area. Additional years will be added as they become available. The underlying algorithm to create the dataset calculates the % of a census tract that falls within the boundaries of a given community area. Given that census tracts and community area boundaries are not aligned, these figures should be considered an estimate. Total population in this dataset: 2,647,621 Total Chicago Population Per ACS 2023: 2,664,452 % Difference: -0.632% There are different approaches in common use for displaying Hispanic or Latino population counts. In this dataset, following the approach taken by the Census Bureau, a person who identifies as Hispanic or Latino will also be counted in the race category with which they identify. However, again following the Census Bureau data, there is also a column for White Not Hispanic or Latino. Code can be found here: https://github.com/Chicago/5-Year-ACS-Survey-Data Community Area Shapefile: https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-Community-Areas-current-/cauq-8yn6 Census Area Python Package Documentation: https://census-area.readthedocs.io/en/latest/index.html

  3. LANGUAGE SPOKEN AT HOME FOR THE POPULATION 5 YEARS AND OVER (C16001)

    • catalog.data.gov
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). LANGUAGE SPOKEN AT HOME FOR THE POPULATION 5 YEARS AND OVER (C16001) [Dataset]. https://catalog.data.gov/dataset/language-spoken-at-home-for-the-population-5-years-and-over-c16001
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    Description

    Table from the American Community Survey (ACS) C16001 of language spoken at home for the population 5 years and over. These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2010 shown by the corresponding census tract vintage. Also includes the most recent release annually.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022, 2023ACS Table(s): C16001Data downloaded from: <a href='https://data.census.gov/' style='color:rgb(0, 97, 155); text

  4. 2021 American Community Survey: B06004D | PLACE OF BIRTH (ASIAN ALONE) IN...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2021 American Community Survey: B06004D | PLACE OF BIRTH (ASIAN ALONE) IN THE UNITED STATES (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2021.B06004D?q=B06004D&g=500XX00US4810
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  5. 2021 American Community Survey: S1601 | LANGUAGE SPOKEN AT HOME (ACS 5-Year...

    • data.census.gov
    Updated Apr 1, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2010). 2021 American Community Survey: S1601 | LANGUAGE SPOKEN AT HOME (ACS 5-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST5Y2021.S1601?g=050XX00US02110
    Explore at:
    Dataset updated
    Apr 1, 2010
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  6. a

    2019-2023 American Community Survey (ACS) 5-year Language Estimates by Tract...

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metro (2025). 2019-2023 American Community Survey (ACS) 5-year Language Estimates by Tract [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/drcMetro::2019-2023-american-community-survey-acs-5-year-language-estimates-by-tract
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Metro
    Area covered
    Description

    Tract-level language spoken at home and limited English proficiency estimates for population 5 years of age and over and for total households. Estimates are accompanied by margins of error, coefficients of variation, and percentages. Geometry source: 2020 Census. Attribute source: 2019-2023 American Community Survey 5-year estimates, tables C16001 and C16002. Date of last data update: 2024-01-01 This is official RLIS data. Contact Person: Joe Gordon joe.gordon@oregonmetro.gov 503-797-1587 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/3823 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use

  7. American Community Survey (ACS) 5-Year Estimates for Coastal Geographies

    • s.cnmilf.com
    • datadiscoverystudio.org
    • +2more
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact, Custodian) (2024). American Community Survey (ACS) 5-Year Estimates for Coastal Geographies [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/american-community-survey-acs-5-year-estimates-for-coastal-geographies1
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    The American Community Survey (ACS) is an ongoing statistical survey that samples a small percentage of the population every year. These data have been apportioned to 13 coastal geographies, and contain detailed demographic, social, economic, and housing characteristics. They represent 5-year estimates derived from the ACS Block Group summary files. Detailed information on the ACS data can be found at the Census Bureau's American Community Survey website and in their researcher's guide entitled, "A Compass for Understanding and Using American Community Survey Data". Detailed information on the geographies the data are available for can be found here: https://coast.noaa.gov/data/digitalcoast/pdf/qrt-american-community-description.pdf

  8. d

    ACS 5-Year Economic Characteristics DC Census Tract

    • catalog.data.gov
    • opendata.dc.gov
    • +3more
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Economic Characteristics DC Census Tract [Dataset]. https://catalog.data.gov/dataset/acs-5-year-economic-characteristics-dc-census-tract
    Explore at:
    Dataset updated
    Mar 4, 2025
    Dataset provided by
    City of Washington, DC
    Area covered
    Washington
    Description

    Employment, Commuting, Occupation, Income, Health Insurance, Poverty, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP03. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  9. 2012-2016 American Community Survey: 5-Year Estimates - Public Use Microdata...

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). 2012-2016 American Community Survey: 5-Year Estimates - Public Use Microdata Sample [Dataset]. https://catalog.data.gov/dataset/2012-2016-american-community-survey-5-year-estimates-public-use-microdata-sample
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The American Community Survey (ACS) Public Use Microdata Sample (PUMS) contains a sample of responses to the ACS. The ACS PUMS dataset includes variables for nearly every question on the survey, as well as many new variables that were derived after the fact from multiple survey responses (such as poverty status).Each record in the file represents a single person, or, in the household-level dataset, a single housing unit. In the person-level file, individuals are organized into households, making possible the study of people within the contexts of their families and other household members. Individuals living in Group Quarters, such as nursing facilities or college facilities, are also included on the person file. ACS PUMS data are available at the nation, state, and Public Use Microdata Area (PUMA) levels. PUMAs are special non-overlapping areas that partition each state into contiguous geographic units containing roughly 100,000 people each. ACS PUMS files for an individual year, such as 2019, contain data on approximately one percent of the United States population.

  10. ACS Housing Units by Year Built Variables - Boundaries

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    • +2more
    Updated Nov 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Housing Units by Year Built Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/0c5047193c3442cc965c1b6ed17f7893
    Explore at:
    Dataset updated
    Nov 17, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows housing units by year built by tenure (owner or renter). This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is modified every few years to change the top-end and bottom-end categories of the years.This layer is symbolized to show the predominant period that housing units were built in. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B25034, B25036, B25035, B25037 (Not all lines of ACS table B25036 are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  11. d

    ACS 5-Year Social Characteristics DC Census Tract

    • opendata.dc.gov
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). ACS 5-Year Social Characteristics DC Census Tract [Dataset]. https://opendata.dc.gov/datasets/cfa155f3c0dc4088bf5c59e8f6b3584d
    Explore at:
    Dataset updated
    Mar 29, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Household type, Education, Disability, Language, Computer/Internet Use, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2018-2022. ACS Table(s): DP02. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2024. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  12. 2023 American Community Survey: B17010G | Poverty Status in the Past 12...

    • data.census.gov
    Updated Aug 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2024). 2023 American Community Survey: B17010G | Poverty Status in the Past 12 Months of Families by Family Type by Presence of Related Children Under 18 Years by Age of Related Children (Two or More Races Householder) (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table?q=B17010G&g=050XX00US48321
    Explore at:
    Dataset updated
    Aug 17, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  13. d

    ACS 5-Year Demographic Characteristics DC Ward

    • opdatahub.dc.gov
    • datahub-dc-dcgis.hub.arcgis.com
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Demographic Characteristics DC Ward [Dataset]. https://opdatahub.dc.gov/datasets/acs-5-year-demographic-characteristics-dc-ward
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: 2022 Wards (State Legislative Districts [Upper Chamber]). Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  14. a

    2018-2022 American Community Survey (ACS) 5-year Race by Tenure by County

    • hub.arcgis.com
    • rlisdiscovery.oregonmetro.gov
    • +1more
    Updated Jan 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metro (2024). 2018-2022 American Community Survey (ACS) 5-year Race by Tenure by County [Dataset]. https://hub.arcgis.com/datasets/1a67649aa7b5469a87ef19f63f39f2c4
    Explore at:
    Dataset updated
    Jan 29, 2024
    Dataset authored and provided by
    Metro
    Area covered
    Description

    County-level race and ethnicity estimates for householders, cross-tabulated with tenure estimates for householders in rented housing units. Race and ethnicity estimates include the following categories: White alone, Black or African American alone, American Indian or Alaska Native alone, Native Hawaiian or Other Pacific Islander alone, Some Other Race alone, Two or More Races, White alone and Not Hispanic or Latino, Hispanic or Latino, and people of color. Estimates are accompanied by margins of error, coefficients of variation, and percentages. Geometry source: 2020 Census. Attribute source: 2018-2022 American Community Survey 5-year estimates, tables B25003, B25003A, B25003B, B25003C, B25003D, B25003E, B25003F, B25003G, B25003H, and B25003I. Date of last data update: 2024-01-11 This is official RLIS data. Contact Person: Joe Gordon joe.gordon@oregonmetro.gov 503-797-1587 RLIS Metadata Viewer: https://gis.oregonmetro.gov/rlis-metadata/#/details/3780 RLIS Terms of Use: https://rlisdiscovery.oregonmetro.gov/pages/terms-of-use

  15. a

    ACS 5-Year Housing Characteristics DC Census Tract

    • hub.arcgis.com
    • catalog.data.gov
    Updated Mar 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). ACS 5-Year Housing Characteristics DC Census Tract [Dataset]. https://hub.arcgis.com/datasets/1cfcf97af52d43568298a77334a2b70c
    Explore at:
    Dataset updated
    Mar 29, 2024
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Occupancy status, Units, Rooms, Year built, Owner/Renter (Tenure), Mortgage/Rent costs, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2018-2022. ACS Table(s): DP04. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2024. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  16. A

    2005-2009 American Community Survey 5-Year Estimates Summary File No Tracts...

    • data.amerigeoss.org
    • census.data.commerce.gov
    • +3more
    csv
    Updated Jul 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). 2005-2009 American Community Survey 5-Year Estimates Summary File No Tracts or Block Groups [Dataset]. https://data.amerigeoss.org/sq/dataset/2005-2009-american-community-survey-5-year-estimates-summary-file-no-tracts-or-block-group
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 26, 2019
    Dataset provided by
    United States[old]
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    A nationwide survey that collects information such as age, race, income, commute time to work, home value, veteran status, and other data. Data from the American Community Survey and the Puerto Rico Community Survey were collected during calendar years 2005- 2009. Data available for small geographies. Census tract and block group data are available in another dataset.

  17. F

    Population Estimate, Total (5-year estimate) in Volusia County, FL

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Population Estimate, Total (5-year estimate) in Volusia County, FL [Dataset]. https://fred.stlouisfed.org/series/B03002001E012127
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Volusia County, Florida
    Description

    Graph and download economic data for Population Estimate, Total (5-year estimate) in Volusia County, FL (B03002001E012127) from 2009 to 2023 about Volusia County, FL; Deltona; FL; estimate; persons; 5-year; population; and USA.

  18. 2022 American Community Survey: B16006 | Language Spoken at Home by Ability...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2022 American Community Survey: B16006 | Language Spoken at Home by Ability to Speak English for the Population 5 Years and Over (Hispanic or Latino) (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2022.B16006
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2022
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..For information on definitions of OMB-defined Hispanic or Latino Origin classifications, see the "Hispanic or Latino Origin" section of the American Community Survey and Puerto Rico Community Survey 2020 Subject Definitions document at https://www2.census.gov/programs-surveys/acs/tech_docs/subject_definitions/2020_ACSSubjectDefinitions.pdf..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  19. F

    Population Estimate, Total (5-year estimate) in Genesee County, MI

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Population Estimate, Total (5-year estimate) in Genesee County, MI [Dataset]. https://fred.stlouisfed.org/series/B03002001E026049
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Genesee County, Michigan
    Description

    Graph and download economic data for Population Estimate, Total (5-year estimate) in Genesee County, MI (B03002001E026049) from 2009 to 2023 about Genesee County, MI; Flint; MI; estimate; persons; 5-year; population; and USA.

  20. F

    Population Estimate, Total (5-year estimate) in Inyo County, CA

    • fred.stlouisfed.org
    json
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Population Estimate, Total (5-year estimate) in Inyo County, CA [Dataset]. https://fred.stlouisfed.org/series/B03002001E006027
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 12, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Inyo County, California
    Description

    Graph and download economic data for Population Estimate, Total (5-year estimate) in Inyo County, CA (B03002001E006027) from 2009 to 2023 about Inyo County, CA; CA; estimate; persons; 5-year; population; and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Census Bureau (2023). ACS 5-Year Data Profiles [Dataset]. https://catalog.data.gov/dataset/acs-5-year-data-profiles-01617
Organization logo

ACS 5-Year Data Profiles

Explore at:
30 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 19, 2023
Dataset provided by
United States Census Bureauhttp://census.gov/
Description

The American Community Survey (ACS) is an ongoing survey that provides data every year -- giving communities the current information they need to plan investments and services. The ACS covers a broad range of topics about social, economic, housing, and demographic characteristics of the U.S. population. The ACS 5-year data profiles include the following geographies: nation, all states (including DC and Puerto Rico), all metropolitan areas, all congressional districts, all counties, all places and all tracts. The Data profiles contain broad social, economic, housing, and demographic information. The data are presented as both counts and percentages. There are over 2,400 variables in this dataset.

Search
Clear search
Close search
Google apps
Main menu