This statistic shows the ten largest cities in France as of 2022. In 2022, around 2.11 million people lived in Paris, making it the largest city in France.
Paris was in 2021 the most populated city in France with over ************inhabitants. Marseille was the second most important city in terms of inhabitants, and Lyon, the third. With ******* inhabitants, Lille was the tenth most populated city in France.
Saint-Denis was the most polluted city in France in 2024, with an average PM2.5 concentration of **** micrograms per cubic meter of air (μg/m³). This level exceeds World Health Organization guidelines by roughly three times. Meanwhile, Lyon had a PM2.5 concentration of *** μg/m³ that year.
This statistic shows the annual average concentration of PM2.5 particles in the air of the ten largest French cities in micrograms per cubic meter (annual average) in 2014. In Marseille, the concentration of PM2.5 in the air rose at around ** μg / m3.
Comprehensive dataset of 5 Military towns in France as of July, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by viswachaitanyasai
Released under MIT
This statistic presents the ranking of the most visited French cities (excluding Paris) by French tourists in 2016, according to the number of nights spent in hotels. That year, around 3.5 million overnight stays were spent by French tourists in the city of Marseille, in pole position in this ranking. Lyon was not far behind with more than 3.4 million hotel nights spent there.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Air Quality Forecast: Contaminant Concentration: PM2.5: France: Paris data was reported at 4.776 mcg/Cub m in 22 May 2025. This records an increase from the previous number of 4.418 mcg/Cub m for 21 May 2025. Air Quality Forecast: Contaminant Concentration: PM2.5: France: Paris data is updated daily, averaging 10.602 mcg/Cub m from Oct 2019 (Median) to 22 May 2025, with 2038 observations. The data reached an all-time high of 63.433 mcg/Cub m in 02 Jan 2021 and a record low of 1.878 mcg/Cub m in 22 Feb 2024. Air Quality Forecast: Contaminant Concentration: PM2.5: France: Paris data remains active status in CEIC and is reported by CEIC Data. The data is categorized under Global Database’s France – Table CAMS.AQF: Air Quality Forecast: Contaminant Concentration: PM2.5: by Cities. [COVID-19-IMPACT]
The list of communes of France contains 38 data allowing to identify the communes and to link the French communes with files from the Open Data, using the Insee code of the commune, or the postal code(s), codes of departments, regions, cantons or academy. The files also contain data on population, area, density, coordinates (of the town hall and geographical center), altitude (average, minimum and maximum) and various information. The simplified geography of the territory of the communes is present in the files marked "with geography" or "with polygon". The names of the cities are offered in 5 different formats (with or without article and/or preposition, in lower or upper case...). The municipalities of the overseas departments, regions and collectivities (DROM-COM) are included in the files but some data may be missing. ### Available file formats The files are available in csv, csv.gz and json on data.gouv.fr. Files in Excel (xlsx), Parquet (.parquet) and Feather (.feather) formats are not accepted on data.gouv.fr but are freely available on villedereve.fr/open-data-donnees-libres-sur-les-communes. ### Years Available The files are available for the years 2022, 2023, 2024 and 2025. The geographies used are those of year N-1 (e.g. 1 January 2024 for file 2025). The differences between the files from one year to the next mainly concern the population as well as administrative changes (groupings or deletions of municipalities, mainly). ### List of data available in files - insee_code: Common code, INSEE code, code assigned by INSEE to the municipality - standard_name: Standard name of the municipality, with its article (e.g.: Le Havre) - name_without_pronoun: Name of the municipality, without its article if applicable (e.g. Havre) - name_a: Name of the municipality, preceded by the preposition to, to or from and article of the municipality, if applicable (e.g.: Le Havre) - name of: Name of the municipality, preceded by the preposition of the municipality's article(s), if any (e.g. Le Havre) - name_without_accent: Name of the municipality without accent, special characters or spaces - Standard_name: Name of municipality in capital letters (e.g.: THE HAVRE) - typecom: Type of municipality in abbreviated version (COM, COMA, COMD, ARM) - typecom_text: Type of municipality in text version - reg_code: Region code assigned by INSEE to the region of the municipality - reg_name: Name of the region where the municipality is located - dep_code: Department code assigned by INSEE to the department of the commune - dep_nom: Name of the department where the municipality is located - canton_code: Canton code of the commune - canton_name: Name of the canton of the municipality - epci_code: EPCI code (public institutions of inter-municipal cooperation) assigned by INSEE to the region of the municipality - epci_name: Name of the EPCI where the municipality is located - postal_code: Main postal code of the municipality - postal_codes: Postal codes attached to the municipality - academie_code: Code of the academy of attachment of the schools of the commune - academie_nom: Name of the home academy - employment_zone: Area of use of the municipality, defined by INSEE - code_insee_centre_zone_emploi: INSEE code of the municipality centre of the area of employment - population: Municipal population - area_hectare: Area of the municipality, in hectare - area_km2: Area of the municipality, in km2 - density: Density of the municipality, inhabitant per km2 - average_altitude: Average altitude, m - minimum_altitude: Minimum altitude, m - maximum_altitude: Maximum altitude, m - latitude_mairie: Latitude of the town hall - longitude_mairie: Longitude of the town hall - latitude_centre: Latitude of the centroid of the communal territory - longitude_centre: Longitude of the centroid of the communal territory - densite_grid: Communal grid of density at 7 levels, according to INSEE - nice: Gentile (names of inhabitants) - url_wikipedia: URL of the wikipedia page of the municipality - url_villedereve: URL of the page City of dream of the municipality ### Data source - INSEE - geo.api.gouv.fr - Ministry of Education - La Poste
In 1500, the largest city was Paris, with an estimated 225 thousand inhabitants, almost double the population of the second-largest city, Naples. As in 1330, Venice and Milan remain the third and fourth largest cities in Western Europe, however Genoa's population almost halved from 1330 until 1500, as it was struck heavily by the bubonic plague in the mid-1300s. In lists prior to this, the largest cities were generally in Spain and Italy, however, as time progressed, the largest populations could be found more often in Italy and France. The year 1500 is around the beginning of what we now consider modern history, a time that saw the birth of many European empires and inter-continental globalization.
The datasets are split by census block, cities, counties, districts, provinces, and states. The typical dataset includes the below fields.
Column numbers, Data attribute, Description 1, device_id, hashed anonymized unique id per moving device 2, origin_geoid, geohash id of the origin grid cell 3, destination_geoid, geohash id of the destination grid cell 4, origin_lat, origin latitude with 4-to-5 decimal precision 5, origin_long, origin longitude with 4-to-5 decimal precision 6, destination_lat, destination latitude with 5-to-6 decimal precision 7, destination_lon, destination longitude with 5-to-6 decimal precision 8, start_timestamp, start timestamp / local time 9, end_timestamp, end timestamp / local time 10, origin_shape_zone, customer provided origin shape id, zone or census block id 11, destination_shape_zone, customer provided destination shape id, zone or census block id 12, trip_distance, inferred distance traveled in meters, as the crow flies 13, trip_duration, inferred duration of the trip in seconds 14, trip_speed, inferred speed of the trip in meters per second 15, hour_of_day, hour of day of trip start (0-23) 16, time_period, time period of trip start (morning, afternoon, evening, night) 17, day_of_week, day of week of trip start(mon, tue, wed, thu, fri, sat, sun) 18, year, year of trip start 19, iso_week, iso week of the trip 20, iso_week_start_date, start date of the iso week 21, iso_week_end_date, end date of the iso week 22, travel_mode, mode of travel (walking, driving, bicycling, etc) 23, trip_event, trip or segment events (start, route, end, start-end) 24, trip_id, trip identifier (unique for each batch of results) 25, origin_city_block_id, census block id for the trip origin point 26, destination_city_block_id, census block id for the trip destination point 27, origin_city_block_name, census block name for the trip origin point 28, destination_city_block_name, census block name for the trip destination point 29, trip_scaled_ratio, ratio used to scale up each trip, for example, a trip_scaled_ratio value of 10 means that 1 original trip was scaled up to 10 trips 30, route_geojson, geojson line representing trip route trajectory or geometry
The datasets can be processed and enhanced to also include places, POI visitation patterns, hour-of-day patterns, weekday patterns, weekend patterns, dwell time inferences, and macro movement trends.
The dataset is delivered as gzipped CSV archive files that are uploaded to your AWS s3 bucket upon request.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This upload contains two Geopackage files of raw data used for urban analysis in the outskirts of Lille and Nice, France.
The data include building footprints (layer "building"), roads (layer "road"), and administrative boundaries (layer "adm_boundaries")
extracted from version 3.3 of the French dataset BD TOPO®3 (IGN, 2023) for the municipalities of Santes, Hallennes-lez-Haubourdin,
Haubourdin, and Emmerin in northern France (Geopackage "DPC_59.gpkg") and Drap, Cantaron and La Trinité in southern France
(Geopackage "DPC_06.gpkg").
Metadata for these layers is available here: https://geoservices.ign.fr/sites/default/files/2023-01/DC_BDTOPO_3-3.pdf
Additionally, this upload contains the results of the following algorithms available in GitHub (https://github.com/perezjoan/emc2-WP2?tab=readme-ov-file)
1. Theidentification
of
main
streets using the QGIS plugin Morpheo (layers "road_morpheo" and "buffer_morpheo")
https://plugins.qgis.org/plugins/morpheo/
2.
Theidentification of main streets in local contexts – connectivity locally weighted
(layer "road_LocRelCon")
3.
Basic morphometryof
buildings
(layer "building_morpho")
4.
Evaluationof
the
number
of
dwellings
within
inhabited
buildings
(layer "building_dwellings")
5. Projectingpopulation
potential
accessible from
main
streets
(layer "road_pop_results")
Project website: http://emc2-dut.org/
Publications using this sample data:
Perez, J. and Fusco, G., 2024. Potential of the 15-Minute Peripheral City: Identifying Main Streets and Population Within Walking Distance. In: O. Gervasi, B. Murgante, C. Garau, D. Taniar, A.M.A.C. Rocha and M.N. Faginas Lago, eds. Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14817. Cham: Springer, pp.50-60. https://doi.org/10.1007/978-3-031-65238-7_4.
Acknowledgement. This work is part of the emc2 project, which received the grant ANR-23-DUTP-0003-01 from the French National Research Agency (ANR) within the DUT Partnership.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Paris, France metro area from 1950 to 2025.
Licence Ouverte / Open Licence 1.0https://www.etalab.gouv.fr/wp-content/uploads/2014/05/Open_Licence.pdf
License information was derived automatically
The dataset on the portal is extracted from a national database to obtain only data on Saint-Louis Agglomération. However, below you will find the description valid throughout France. This dataset details the perimeters of the city’s policy priority neighbourhoods. The perimeters of the priority districts of the city’s policy are fixed by Decree No. 2014-1750 of 30 December 2014 for the metropolis and by [Decree No 2014-1751 of 30 December 2014] for the overseas departments, in Saint-Martin and in French Polynesia. The Programming Act for the City and Urban Cohesion of 21 February 2014 provides, in its article 5, the modalities for the reform of the priority geography of the city’s policy. These are detailed, for the metropolis, in Decree No. 2014-767 of 3 July 2014 on the national list of priority districts of the city’s policy and its specific modalities of determination in the metropolitan departments and, for ultra-marine territories, in Decree No 2014-1575 of 22 December 2014 on the modalities for determining the priority districts of the city’s policy particular to the overseas departments, Saint-Martin and French Polynesia. These perimeters replace sensitive urban areas (Zus) and neighbourhoods in an urban contract for social cohesion (CUCS) from 1 January 2015.
In 2025, Moscow was the largest city in Europe with an estimated urban agglomeration of 12.74 million people. The French capital, Paris, was the second largest city in 2025 at 11.35 million, followed by the capitals of the United Kingdom and Spain, with London at 9.84 million and Madrid at 6.81 million people. Istanbul, which would otherwise be the largest city in Europe in 2025, is excluded as it is only partially in Europe, with a sizeable part of its population living in Asia. Europe’s population is almost 750 million Since 1950, the population of Europe has increased by approximately 200 million people, increasing from 550 million to 750 million in these seventy years. Before the turn of the millennium, Europe was the second-most populated continent, before it was overtaken by Africa, which saw its population increase from 228 million in 1950 to 817 million by 2000. Asia has consistently had the largest population of the world’s continents and was estimated to have a population of 4.6 billion. Europe’s largest countries Including its territory in Asia, Russia is by far the largest country in the world, with a territory of around 17 million square kilometers, almost double that of the next largest country, Canada. Within Europe, Russia also has the continent's largest population at 145 million, followed by Germany at 83 million and the United Kingdom at almost 68 million. By contrast, Europe is also home to various micro-states such as San Marino, which has a population of just 30 thousand.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about companies in France. It has 148,114 rows. It features 5 columns: city, country, industry, and foundation year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about universities in France. It has 75 rows. It features 5 columns: country, city, foundation year, and graduate students.
In 2025, the Ile-de-France region, sometimes called the Paris region, was the most populous in France. It is located in the northern part of France, divided into eight departments and crossed by the Seine River. The region contains Paris, its large suburbs, and several rural areas. The total population in metropolitan France was estimated at around ** million inhabitants. In the DOM (Overseas Department), France had more than *** million citizens spread over the islands of Guadeloupe, Martinique, Reunion, Mayotte, and the South American territory of French Guiana. Ile-de-France: the most populous region in France According to the source, more than ** million French citizens lived in the Ile-de-France region. Ile-de-France was followed by Auvergne-Rhône-Alpes and Occitanie region which is in the Southern part of the country. Ile-de-France is not only the most populated region in France, it is also the French region with the highest population density. In 2020, there were ******* residents per square kilometer in Ile-de-France compared to ***** for Auvergne-Rhône-Alpes, the second most populated region in France. More than two million people were living in the city of Paris in 2025. Thus, the metropolitan area outside the city of Paris, called the suburbs or banlieue in French, had more than ten million inhabitants. Ile-de-France concentrates the majority of the country’s economic and political activities. An urban population In 2024, the total population of France amounted to over 68 million. The population in the country has increased since the mid-2000s. As well as the other European countries, France is experiencing urbanization. In 2023, more than ** percent of the French population lived in cities. This phenomenon shapes France’s geography.
The city of Paris in France had an estimated gross domestic product of 757.6 billion Euros in 2021, the most of any European city. Paris was followed by the spanish capital, Madrid, which had a GDP of 237.5 billion Euros, and the Irish capital, Dublin at 230 billion Euros. Milan, in the prosperous north of Italy, had a GDP of 228.4 billion Euros, 65 billion euros larger than the Italian capital Rome, and was the largest non-capital city in terms of GDP in Europe. The engine of Europe Among European countries, Germany had by far the largest economy, with a gross domestic product of over 4.18 trillion Euros. The United Kingdom or France have been Europe's second largest economy since the 1980s, depending on the year, with forecasts suggesting France will overtake the UK going into the 2020s. Germany however, has been the biggest European economy for some time, with five cities (Munich, Berlin, Hamburg, Stuttgart and Frankfurt) among the 15 largest European cities by GDP. Europe's largest cities In 2023, Moscow was the largest european city, with a population of nearly 12.7 million. Paris was the largest city in western Europe, with a population of over 11 million, while London was Europe's third-largest city at 9.6 million inhabitants.
This statistic shows the ten largest cities in France as of 2022. In 2022, around 2.11 million people lived in Paris, making it the largest city in France.