Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Rule by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Rule. The dataset can be utilized to understand the population distribution of Rule by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Rule. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Rule.
Key observations
Largest age group (population): Male # 65-69 years (42) | Female # 45-49 years (56). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rule Population by Gender. You can refer the same here
This dataset provides information about the number of properties, residents, and average property values for 5th Street cross streets in Rule, TX.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
In 2023, professionals from the legal sector generally agreed that the effective use of generative AI (GenAI) would separate successful and unsuccessful law firms within the next five years. Only *** percent of respondents strongly disagreed that this would be the case. ** percent had no strong opinion and neither agreed nor disagreed with the statement.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts and measures for individuals from the 2013, 2018, and 2023 Censuses. Data is available by statistical area 2.
The variables included in this dataset are for the census usually resident population count (unless otherwise stated). All data is for level 1 of the classification (unless otherwise stated).
The variables for part 1 of the dataset are:
Download lookup file for part 1 from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Te Whata
Under the Mana Ōrite Relationship Agreement, Te Kāhui Raraunga (TKR) will be publishing Māori descent and iwi affiliation data from the 2023 Census in partnership with Stats NZ. This will be available on Te Whata, a TKR platform.
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
Study participation time series
In the 2013 Census study participation was only collected for the census usually resident population count aged 15 years and over.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Concept descriptions and quality ratings
Data quality ratings for 2023 Census variables has additional details about variables found within totals by topic, for example, definitions and data quality.
Disability indicator
This data should not be used as an official measure of disability prevalence. Disability prevalence estimates are only available from the 2023 Household Disability Survey. Household Disability Survey 2023: Final content has more information about the survey.
Activity limitations are measured using the Washington Group Short Set (WGSS). The WGSS asks about six basic activities that a person might have difficulty with: seeing, hearing, walking or climbing stairs, remembering or concentrating, washing all over or dressing, and communicating. A person was classified as disabled in the 2023 Census if there was at least one of these activities that they had a lot of difficulty with or could not do at all.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Measures
Measures like averages, medians, and other quantiles are calculated from unrounded counts, with input noise added to or subtracted from each contributing value during measures calculations. Averages and medians based on less than six units (e.g. individuals, dwellings, households, families, or extended families) are suppressed. This suppression threshold changes for other quantiles. Where the cells have been suppressed, a placeholder value has been used.
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for 'Total stated' where this applies.
Symbol
-997 Not available
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
SHARE - Survey of Health, Ageing and Retirement in Europe - is a multidisciplinary and cross-national panel database. It provides micro data on health, socio-economic status and social and family networks of thousands individuals aged 50 or over and their (younger) partners. The Survey of Health, Ageing and Retirement in Europe seeks to analyse the process of population ageing in depth.
Copyright © Survey of Health, Ageing and Retirement in Europe (SHARE) 2015
When using data from this dataset, please cite the dataset as follows: Börsch-Supan, A. (2022). Survey of Health, Ageing and Retirement in Europe (SHARE) Wave 5. Release version: 8.0.0. SHARE-ERIC. Data set. DOI: 10.6103/SHARE.w5.800
Please also cite the following publications in addition to theSHARE acknowledgement: Börsch-Supan, A., T. Kneip, H. Litwin, M. Myck, G. Weber (Eds.) (2015). Ageing in Europe - Supporting Policies for an Inclusive Society. Berlin: De Gruyter. Malter, F. and A. Börsch-Supan (Eds.) (2015). SHARE Wave 5: Innovations & Methodology. Munich: MEA, Max Planck Institute for Social Law and Social Policy. Börsch-Supan, A., Brandt, M., Hunkler, C., Kneip, T., Korbmacher, J., Malter, F., Schaan, B., Stuck, S. and Zuber, S. (2013). Data Resource Profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). International Journal of Epidemiology DOI: 10.1093/ije/dyt088.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present federal funds rates coming from a range of simple monetary policy rules based on multiple economic forecasts. Use our tool to create your own rule. Released quarterly.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table is part of a series of tables that present a portrait of Canada based on the various census topics. The tables range in complexity and levels of geography. Content varies from a simple overview of the country to complex cross-tabulations; the tables may also cover several censuses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average number of rules generated by the association rule mining process for each of the five types of serialisation of the dependency structure, on the ART corpus.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Number of households broken down by number of persons in the household. Households are household-dwelling units. All persons registered in the same apartment are counted to the same household. For more information on household statistics, see Statistics Sweden’s document “Register-based household statistics”. Data from the Register of Total Population (RTB). In this file there are statistics for a number of variables broken down by Malmö’s different areas over time. Source Unless otherwise stated, the statistics in this database are retrieved from Statistics Sweden’s (SCB) regional database, Skånedatabasen or from Statistics Sweden’s area statistics database (OSDB). The Skåne database and OSDB show data from several different sources that Statistics Sweden has compiled on a geographical level. The statistics only cover persons who are part of the population registered in the population. Therefore, persons without a residence permit, such as asylum seekers, and persons who simply have not registered in the municipality are not included. Statistics Sweden does not provide statistics on which language residents speak, which religion you belong to or what ethnicity or political views you have. Therefore, such data is not available here either. However, the Electoral Authority reports election results per constituency on its website val.se. There are statistics from the last election as well as several previous elections available. Please note, however, that the constituencies do not necessarily follow the division of the city made here. Update The data is updated every spring as Statistics Sweden releases the figures to the municipality. Most variables are available for the year before. However, income and employment data are released with another year’s backlog. Unless otherwise stated, the date of measurement is 31 December of each year. Geographical breakdown Unless otherwise stated, the data is available for Malmö as a whole and broken down into urban areas (5 pieces), districts (10 pieces) and subareas (136 pieces). In addition to these, there is a residual post that contains the people who are not written in a specific place in the municipality, have protected identity and more. These people are also part of the total. In several of the subareas there are no or only a few registered population registers. Therefore, no data are reported for these areas. Examples of such sub-areas are parks such as Pildammsparken and Kroksbäcksparken and industrial areas such as Fosieby Industriområde and Spillepengen. Privacy clearance In order to protect the identity of individuals, the data is confidentially audited. This means that small values are suppressed, i.e. replaced by empty cells. However, the values are included in summaries. In general, the following rules apply: * No statistics are reported for geographical areas with very few housing. * No cells with fewer than 5 individuals are reported. For data classified as sensitive (e.g. income and country of birth), larger values can also be suppressed. * In cases where a subcategory (e.g. a training category) is too small to be accounted for, all categories are often suppressed. Please use the numbers, but use “City Office, Malmö City” as the source.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The data used for this report was collected by Kevin Woods and based on literature reviews as well as semistructured interviews with RFD officials, academics in Thai universities, and the private sector. In all cases, interviewees were told that that the study was funded by the European Forestry Institute and would likely result in a public report. Unless otherwise noted, data on wood import and export volumes was compiled by James Hewitt for the European Forestry Institute. The primary source of these trade statistics originates from the Customs Department of the Kingdom of Thailand. Additional sources were World Trade Atlas and UN Comtrade. Also, Thai newspapers were an important source for secondary data. Donor reports and web-based newspapers were instrumental in obtaining secondary data. Every effort has been made to provide pertinent analyses and accurate quantitative figures on the Thai forest product trade. Also, it should be clear that while this report strives to be as comprehensive as possible regarding the forest law enforcement, governance and forest products trade in Thailand, some aspects of this initiative may not have been captured.
The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. Results for sub-state geographic areas in New Mexico were released in a series of data products. These data come from Summary File 1 (SF-1). The geographic coverage for SF-1 includes the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, census tracts, block groups and blocks, among others. The data in this particular RGIS Clearinghouse table is for Torrance County and all census blocks within the county. Table DC10_00513 shows counts of females by eighteen 5-year age groups. This file, along with file-specific descriptions (in Word and text formats) are available in a single zip file.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html for more details. Select geographies of 2008 data comparable to the 2009 and later tables are available at https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html. The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Common R packages for general purposes.
Trial Information: Rat
Each corresponds to a column in the data file.
RATID = 1;
SEX = 2; MALE = 1; FEMALE = 2;
CONDITION = 3; RBF = 1; RBO = 2; IIP = 3; IIN = 4;
SESSION = 4;
TRIAL_NUMBER = 5;
FREQUENCY = 6;
ORIENTATION = 7;
CATEGORY = 8; CATA = 1; CATB = 2;
CORRECT_CHOICE = 9; LEFT = 1; RIGHT = 2;
CHOICE_SIDE = 10; LEFT = 1; RIGHT = 2;
ACCURACY = 11; CORRECT = 1; INCORRECT = 0;
STAR_RT = 12;
CUERT_1 = 13;
CUERT_2 = 14;
CUERT_3 = 15;
CHOICERT = 16;
REWARDRT = 17;
STARX = 18;
STARY = 19;
CUEX_1 = 20;
CUEY_1 = 21;
CUEX_2 = 22;
CUEY_2 = 23;
CUEX_3 = 24;
CUEY_3 = 25;
CHOICEX = 26;
CHOICEY = 27;
REWARDX ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Rule by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Rule across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.68% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rule Population by Race & Ethnicity. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html for more details. Select geographies of 2008 data comparable to the 2009 and later tables are available at https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html. The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In this file there are statistics for a number of variables broken down by Malmö’s different areas over time. Sources* Unless otherwise stated, the statistics in this database are retrieved from Statistics Sweden’s (SCB) regional database, Skånedatabasen or from Statistics Sweden’s area statistics database (OSDB). The Skåne database and OSDB show data from several different sources that Statistics Sweden has compiled on a geographical level. The statistics only cover persons who are part of the population registered in the population. Therefore, persons without a residence permit, such as asylum seekers, and persons who simply have not registered in the municipality are not included. Statistics Sweden does not provide statistics on which language residents speak, which religion you belong to or what ethnicity or political views you have. Therefore, such data is not available here either. However, the Electoral Authority reports election results per constituency on its website val.se. There are statistics from the last election as well as several previous elections available. Please note, however, that the constituencies do not necessarily follow the division of the city made here. Update The data is updated every spring as Statistics Sweden releases the figures to the municipality. Most variables are available for the year before. However, income and employment data are released with another year’s backlog. Unless otherwise stated, the date of measurement is 31 December of each year. Geographical breakdown* Unless otherwise stated, the data is available for Malmö as a whole and broken down into urban areas (5 pieces), districts (10 pieces) and subareas (136 pieces). In addition to these, there is a residual post that contains the people who are not written in a specific place in the municipality, have protected identity and more. These people are also part of the total. In several of the subareas there are no or only a few registered population registers. Therefore, no data are reported for these areas. Examples of such sub-areas are parks such as Pildammsparken and Kroksbäcksparken and industrial areas such as Fosieby Industriområde and Spillepengen. Privacy clearance** In order to protect the identity of individuals, the data is confidentially audited. This means that small values are suppressed, i.e. replaced by empty cells. However, the values are included in summaries. In general, the following rules apply: * No statistics are reported for geographical areas with very few housing. * No cells with fewer than 5 individuals are reported. For data classified as sensitive (e.g. income and country of birth), larger values can also be suppressed. * In cases where a subcategory (e.g. a training category) is too small to be accounted for, all categories are often suppressed. Please use the numbers, but use “City Office, Malmö City” as the source.
In this file there are statistics for a number of variables broken down by Malmö’s different areas over time. Source Unless otherwise stated, the statistics in this database are retrieved from Statistics Sweden’s (SCB) regional database, Skånedatabasen or from Statistics Sweden’s area statistics database (OSDB). The Skåne database and OSDB show data from several different sources that Statistics Sweden has compiled on a geographical level. The statistics only cover persons who are part of the population registered in the population.Therefore, persons without a residence permit, such as asylum seekers, and persons who simply have not registered in the municipality are not included. Statistics Sweden does not provide statistics on which language residents speak, which religion you belong to or what ethnicity or political views you have. Therefore, such data is not available here either.However, the Electoral Authority reports election results per constituency on its website val.se. There are statistics from the last election as well as several previous elections available. Please note, however, that the constituencies do not necessarily follow the division of the city made here. Update The data is updated every spring as Statistics Sweden releases the figures to the municipality. Most variables are available for the year before.However, income and employment data are released with another year’s backlog. Unless otherwise stated, the date of measurement is 31 December of each year. Geographical breakdown Unless otherwise stated, the data is available for Malmö as a whole and broken down into urban areas (5 pieces), districts (10 pieces) and subareas (136 pieces). In addition to these, there is a residual post that contains the people who are not written in a specific place in the municipality, have protected identity and more. These people are also part of the total. In several of the subareas there are no or only a few registered population registers.Therefore, no data are reported for these areas. Examples of such sub-areas are parks such as Pildammsparken and Kroksbäcksparken and industrial areas such as Fosieby Industriområde and Spillepengen. Privacy clearance In order to protect the identity of individuals, the data is confidentially audited. This means that small values are suppressed, i.e. replaced by empty cells.However, the values are included in summaries. In general, the following rules apply: * No statistics are reported for geographical areas with very few housing. * No cells with fewer than 5 individuals are reported. For data classified as sensitive (e.g. income and country of birth), larger values can also be suppressed. * In cases where a subcategory (e.g. a training category) is too small to be accounted for, all categories are often suppressed. Please use the numbers, but use “City Office, Malmö City” as the source.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains counts for territorial authority local board area (TALB) of usual residence by TALB of usual residence address one year ago and five years ago, and by life cycle age group, for the census usually resident population count, 2023 Census.
This dataset compares usual residence at the 2023 Census with usual residence one and five years earlier to show population mobility and internal migration patterns of people within New Zealand.
‘Usual residence address’ is the address of the dwelling where a person considers that they usually live.
‘Usual residence one year ago address’ identifies an individual’s usual residence on 7 March 2022, which may be different to their current usual residence on census night 2023 (7 March 2023).
‘Usual residence five years ago address’ identifies an individual’s usual residence on 6 March 2018, which may be different to their current usual residence on census night 2023 (7 March 2023).
Note: This dataset only includes usual residence address information for individuals whose usual residence address one year ago and five years ago is available at TALB.
Life cycle age groups are categorised as:
This dataset can be used in conjunction with the following spatial files by joining on the TALB code values:
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Population counts
Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts.
Rows excluded from the dataset
Rows show TALB of usual residence by TALB of usual residence one year ago and five years ago, by life cycle age group. Cells with a number less than six have been confidentialised. Responses to categories unable to be mapped, such as response unidentifiable, not stated, and Auckland (not further defined), have also been excluded from this dataset.
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Age quality rating
Age is rated as very high quality.
Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Census usually resident population quality rating
The census usually resident population count is rated as very high quality.
Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Usual residence address quality rating
Usual residence address is rated as high quality.
Usual residence address – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Usual residence one year ago quality rating
Usual residence one year ago area is rated as high quality.
Usual residence one year ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Usual residence five years ago quality rating
Usual residence five years ago area is rated as high quality.
Usual residence five years ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-999 Confidential
Inconsistencies in definitions
Please note that there may be differences in definitions between census classifications and those used for other data collections.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Rule by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Rule. The dataset can be utilized to understand the population distribution of Rule by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Rule. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Rule.
Key observations
Largest age group (population): Male # 65-69 years (42) | Female # 45-49 years (56). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rule Population by Gender. You can refer the same here